Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. Jo, D. Pugal, I.-K. Oh, K. J. Kim, and K. Asaka, “ Recent advances in ionic polymer–metal composite actuators and their modeling and applications,” Prog. Polym. Sci. 38, 10371066 (2013).
C. Devendran, I. Gralinski, and A. Neild, “ Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel,” Microfluidics Nanofluidics 17, 879890 (2014).
K. Asaka and H. Okuzaki, Soft Actuators: Materials, Modeling, Applications, and Future Perspectives ( Springer, 2014).
L. Ionov, “ Actively moving materials based on stimuli-responsive polymers,” J. Mater. Chem. 20, 33823390 (2010).
Q. Zhao, H. J. Qi, and T. Xie, “ Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog. Polymer Sci. 49, 79120 (2015).
J. Zhang, C. Wang, and C. Bowen, “ Piezoelectric effects and electromechanical theories at the nanoscale,” Nanoscale 6, 13314 (2014).
J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “ A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 10781113 (2014).
M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, “ Shape memory polymers: Past, present and future developments,” Prog. Polym. Sci. 49, 333 (2015).
S. Park, J. An, J. W. Suk, and R. S. Ruoff, “ Graphene-based actuators,” Small 6, 210212 (2010).
S.-E. Zhu, R. Shabani, J. Rho, Y. Kim, B. H. Hong, J.-H. Ahn, and H. J. Cho, “ Graphene-based bimorph microactuators,” Nano Lett. 11, 977981 (2011).
X. Xie, L. Qu, C. Zhou, Y. Li, J. Zhu, H. Bai, G. Shi, and L. Dai, “ An asymmetrically surface-modified graphene film electrochemical actuator,” ACS Nano 4, 60506054 (2010).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “ The role of graphene for electrochemical energy storage,” Nat. Mater. 14, 271279 (2015).
Y. Hu, J. Wei, Y. Liang, H. Zhang, X. Zhang, W. Shen, and H. Wang, “ Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes,” Angew. Chem. Int. Ed. 55, 2048 (2015).
T. Q. Trung, N. T. Tien, D. Kim, M. Jang, O. J. Yoon, and N.-E. Lee, “ A flexible reduced graphene oxide field effect transistor for ultrasensitive strain sensing,” Adv. Funct. Mater. 24, 117124 (2014).
S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, and T. Ryhänen, “ Ultrafast graphene oxide humidity sensors,” ACS Nano 7, 1116611173 (2013).
J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, “ Mechanical properties of monolayer graphene oxide,” ACS Nano 4, 65576564 (2010).
Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “ Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater. 22, 39063924 (2010).
L. B. Casabianca, M. A. Shaibat, W. Cai, S. Park, R. Piner, R. S. Ruoff, and Y. Ishii, “ NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations,” J. Am. Chem. Soc. 132, 56725676 (2010).
J. Zhao, L. Liu, and F. Li, Graphene Oxide: Physics and Applications ( Springer, 2015).
W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, “ Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science 321, 18151817 (2008).
S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, “ Room-temperature metastability of multilayer graphene oxide films,” Nat. Mater. 11, 544549 (2012).
M. Z. Hossain, J. E. Johns, K. H. Bevan, H. J. Karmel, Y. T. Liang, S. Yoshimoto, K. Mukai, T. Koitaya, J. Yoshinobu, M. Kawai, A. M. Lear, L. L. Kesmodel, S. L. Tait, and M. C. Hersam, “ Chemically homogeneous and thermally reversible oxidation of epitaxial graphene,” Nat. Chem. 4, 305309 (2012).
E. C. Mattson, H. Pu, S. Cui, M. A. Schofield, S. Rhim, G. Lu, M. J. Nasse, R. S. Ruoff, M. Weinert, M. Gajdardziska-Josifovska, J. Chen, and C. J. Hirschmugl, “ Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum,” ACS Nano 5, 97109717 (2011).
B. Huang, H. Xiang, Q. Xu, and S.-H. Wei, “ Overcoming the phase inhomogeneity in chemically functionalized graphene: the case of graphene oxides,” Phys. Rev. Lett. 110, 085501 (2013).
D. Pandey, R. Reifenberger, and R. Piner, “ Scanning probe microscopy study of exfoliated oxidized graphene sheets,” Surf. Sci. 602, 16071613 (2008).
J.-L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud'homme, I. A. Aksay, and R. Car, “ Oxygen-driven unzipping of graphitic materials,” Phys. Rev. Lett. 96, 176101 (2006).
S. Fujii and T. Enoki, “ Cutting of oxidized graphene into nanosized pieces,” J. Am. Chem. Soc. 132, 1003410041 (2010).
Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, “ How graphene is cut upon oxidation?,” J. Am. Chem. Soc. 131, 63206321 (2009).
L. Ma, J. Wang, and F. Ding, “ Strain induced orientation selective cutting of graphene into graphene nanoribbons on oxidation,” Angew. Chem. Int. Ed. 51, 11611164 (2012).
T. Sun and S. Fabris, “ Mechanisms for oxidative unzipping and cutting of graphene,” Nano Lett. 12, 1721 (2011).
G. W. Rogers and J. Z. Liu, “ High-performance graphene oxide electromechanical actuators,” J. Am. Chem. Soc. 134, 12501255 (2011).
G. W. Rogers and J. Z. Liu, “ Monolayer graphene oxide as a building block for artificial muscles,” Appl. Phys. Lett. 102, 021903 (2013).
Z. Chang, W. Yan, J. Shang, and J. Z. Liu, “ Piezoelectric properties of graphene oxide: A first-principles computational study,” Appl. Phys. Lett. 105, 023103 (2014).
Z. Chang, J. Deng, G. G. Chandrakumara, W. Yan, and J. Z. Liu, “ Two-dimensional shape memory graphene oxide,” Nat. Commun. 7, 11972 (2016).
G. G. Chandrakumara, J. Shang, L. Qiu, X.-Y. Fang, F. Antolasic, D. E. Christopher, J. Song, T. Alan, D. Li, and J. Z. Liu, “ Tuning the oxygen functional groups in reduced graphene oxide papers to enhance the electromechanical actuation,” RSC Adv. 5, 6805268060 (2015).
G. da Cunha Rodrigues, P. Zelenovskiy, K. Romanyuk, S. Luchkin, Y. Kopelevich, and A. Kholkin, “ Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates,” Nat. Commun. 6, 7572 (2015).
Z. Xu and K. Xue, “ Engineering graphene by oxidation: a first-principles study,” Nanotechnology 21, 045704 (2010).
G. Kresse and J. Furthmüller, “ Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).
G. Kresse and D. Joubert, “ From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev.B 59, 1758 (1999).
G. W. Rogers and J. Z. Liu, “ Graphene actuators: quantum-mechanical and electrostatic double-layer effects,” J. Am. Chem. Soc. 133, 1085810863 (2011).
J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “ Electromechanical resonators from graphene sheets,” Science 315, 490493 (2007).
X. Xie, H. Bai, G. Shi, and L. Qu, “ Load-tolerant, highly strain-responsive graphene sheets,” J. Mater. Chem. 21, 20572059 (2011).
Y. Huang, J. Liang, and Y. Chen, “ The application of graphene based materials for actuators,” J. Mater. Chem. 22, 36713679 (2012).
J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang, J. Oh, M. Kozlov, Y. Ma, F. Li, and R. Baughman, “ Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene,” ACS Nano 6, 45084519 (2012).
H. Bi, K. Yin, X. Xie, Y. Zhou, S. Wan, F. Banhart, and L. Sun, “ Microscopic bimetallic actuator based on a bilayer of graphene and graphene oxide,” Nanoscale 5, 91239128 (2013).

Data & Media loading...


Article metrics loading...



Using density functional theory (DFT) calculations, two stable phases were found for several graphene oxide (GO) crystals with linearly aligned epoxy groups. Upon electron injection, they exhibit two-way actuation behavior. This two-way actuation is named by the observations that one piece of monolayer GO crystal is able to expand or contract upon electron injection, namely, contraction of the stable phase, and expansion of the meta-stable phase. The obtained maximum in-plane strains are as high as 8% and −5%. Such large deformation in opposite directions obtained from a single piece GO material offers unique opportunities in designing highly tunable and integrated actuators for microelectromechanical or nanoelectromechanical systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd