Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature 429, 642 (2004).
S. Nakamura and M. R. Krames, Proc. IEEE 101, 2211 (2013).
S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 32, L8 (1993).
J. Piprek, Phys. Status Solidi A 207, 2217 (2010).
E. F. Schubert, Light-Emitting Diodes ( Cambridge University Press, 2006).
Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park, and G. C. Yi, Adv. Mater. 23, 3284 (2011).
M. Yamada, Y. Narukawa, H. Tamaki, Y. Murazaki, and T. Mukai, IEICE Trans. Electron. E88-C, 1860 (2005).
W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, J. Mater. Chem. 21, 6869 (2011).
H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, Nano Lett. 12, 1317 (2012).
E. Jang, S. Jun, H. Jang, J. Llim, B. Kim, and Y. Kim, Adv. Mater. 22, 3076 (2010).
N. J. Findlay, J. Bruckbauer, A. R. Inigo, B. Breig, S. Arumugam, D. J. Wallis, R. W. Martin, and P. J. Skabara, Adv. Mater. 26, 7290 (2014).
R. Smith, B. Liu, J. Bai, and T. Wang, Nano Lett. 13, 3042 (2013).
K. Kim, J. Y. Woo, S. Jeong, and C. S. Han, Adv. Mater. 23, 911 (2011).
H. S. Chen, C. K. Hsu, and H. Y. Hong, IEEE Photonics Technol. Lett. 18, 193 (2006).
S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, Adv. Mater. 22, 602 (2010).
M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, Nano Lett. 6, 1396 (2006).
B. Jiang, C. Zhang, X. Wang, M. J. Park, J. S. Kwak, J. Xu, H. Zhang, J. Zhang, F. Xue, and M. Xiao, Adv. Funct. Mater. 22, 3146 (2012).
N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).
J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, Appl. Phys. Lett. 92, 261103 (2008).
J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013).
M. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).
J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).
K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 94, 061116 (2009).
M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, Appl. Phys. Lett. 94, 041103 (2009).
K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
C. Lin, C. Su, Y. Kuo, C. Chen, Y. Yao, P. Shih, H. Chen, C. Hsieh, Y. Kiang, and C. C. Yang, Appl. Phys. Lett. 105, 101106 (2014).
Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, Adv. Funct. Mater. 26, 36 (2016).
Z. Zhuang, X. Guo, B. Liu, F. Hu, J. Dai, Y. Zhang, Y. Li, T. Tao, T. Zhi, Z. Xie, H. Ge, X. Wang, M. Xiao, T. Wang, Y. Shi, Y. Zheng, and R. Zhang, Nanotechnology 27, 015301 (2016).
Z. Zhuang, X. Guo, G. Zhang, B. Liu, R. Zhang, T. Zhi, T. Tao, H. Ge, F. Ren, Z. Xie, and Y. Zheng, Nanotechnology 24, 405303 (2013).
Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M. Kim, and Y. Park, Appl. Phys. Lett. 97, 133507 (2010).
S. Karpov, Opt. Quantum Electron. 47, 1293 (2015).
F. Zhang, J. Liu, G. You, C. Zhang, S. E. Mohney, M. J. Park, J. S. Kwak, Y. Wang, D. D. Koleske, and J. Xu, Opt. Express 20, A333 (2012).
B. Liu, R. Smith, J. Bai, Y. Gong, and T. Wang, Appl. Phys. Lett. 103, 101108 (2013).

Data & Media loading...


Article metrics loading...



Blue InGaN/GaN nanohole light-emitting diodes have been fabricated by soft UV-curing nanoimprint lithography, filling with CdSe/ZnS core/shell nanocrystals (NCs) as color conversion mediums. The excitonic recombination dynamics of hybrid nanohole light-emitting diodes were investigated by time-resolved photoluminescence, observing a significant reduction in the decay lifetime of excitons as a result of an efficient non-radiative resonant energy transfer, which leads to the improvement of color conversion and efficiency droop in these hybrid nanohole light-emitting diodes compared to hybrid nanocrystals/standard planar light-emitting diodes. The color-conversion efficiency and effective quantum yield of hybrid nanohole light-emitting diodes were nearly twice as much as those of hybrid standard light-emitting diodes. A model on the excitonic recombination process was proposed to explore this situation, explaining the advantages of non-radiative resonant energy transfer that avoiding energy loss associated with the intermediate light emission and conversion steps and transferring energy non-radiatively and resonantly to NCs with a higher quantum yield. The efficiency droop of hybrid nanohole light-emitting diodes was validly suppressed compared to the bare ones, even better than that of hybrid standard light-emitting diodes. It mainly results from the extraction of excess carrier concentrations in InGaN/GaN multiple quantum wells via the rapid non-radiative resonant energy transfer process under the higher injection condition, revealing a great potential to realize efficient white light emitters in the future.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd