Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. S. Dedkov, U. Rüdiger, and G. Güntherodt, Phys. Rev. B 65, 064417 (2002).
K. P. Kämper, W. Schmitt, G. Güntherodt, R. J. Gambino, and R. Ruf, Phys. Rev. Lett. 59, 2788 (1987).
X. L. Wang, Phys. Rev. Lett. 100, 156404 (2008).
X. Wang, G. Peleckis, C. Zhang, H. Kimura, and S. Dou, Adv. Mater. 21, 2196 (2009).
S. Ouardi, G. H. Fecher, C. Felser, and J. Kübler, Phys. Rev. Lett. 110, 100401 (2013).
G. Z. Xu, Y. Du, X. M. Zhang, H. G. Zhang, E. K. Liu, W. H. Wang, and G. H. Wu, Appl. Phys. Lett. 104, 242408 (2014).
M. E. Jamer, B. A. Assaf, T. Devakul, and D. Heiman, Appl. Phys. Lett. 103, 142403 (2013).
L. Bainsla, A. I. Mallick, M. M. Raja, A. K. Nigam, B. S. D. C. S. Varaprasad, Y. K. Takahashi, A. Alam, K. G. Suresh, and K. Hono, Phys. Rev. B 91, 104408 (2015).
P. Kharel, W. Zhang, R. Skomski, S. Valloppilly, Y. Huh, R. Fuglsby, S. Gilbert, and D. J. Sellmyer, J. Phys. D: Appl. Phys. 48, 245002 (2015).
P. Lukashev, P. Kharel, S. Gilbert, B. Staten, N. Hurley, R. Fuglsby, Y. Huh, S. Valloppilly, W. Zhang, K. Yang, R. Skomski, and D. J. Sellmyer, Appl. Phys. Lett. 108, 141901 (2016).
S. Skaftouros, K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, Appl. Phys. Lett. 102, 022402 (2013).
K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, J. Appl. Phys. 113, 193903 (2013).
A. Rajanikanth, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 101, 023901 (2007).
G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, Europhys. Lett. 102, 17007 (2013).
L. Bainsla, A. I. Mallick, A. A. Coelho, A. K. Nigam, B. S. D. C. S. Varaprasad, Y. K. Takahashi, A. Alam, K. G. Suresh, and K. Hono, J. Magn. Magn. Mater. 394, 82 (2015).
M. Jourdan, J. Minár, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H. J. Elmers, G. Schönhense, H. Ebert, C. Felser, and M. Kläui, Nat. Commun. 5, 3974 (2014).
L. Hong-xi, H. Yusuke, M. Ken-ichi, A. Masashi, U. Tetsuya, and Y. Masafumi, Jpn. J. Appl. Phys., Part 1 51, 093004 (2012).
R. Choudhary, P. Kharel, S. R. Valloppilly, Y. Jin, A. O'Connell, Y. Huh, S. Gilbert, A. Kashyap, D. J. Sellmyer, and R. Skomski, AIP Adv. 6, 056304 (2016).
Z. Gercsi and K. Hono, J. Phys.: Condens. Matter 19, 326216 (2007).
K. Kobayashi, R. Y. Umetsu, R. Kainuma, K. Ishida, T. Oyamada, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 85, 4684 (2004).
S. V. Karthik, A. Rajanikanth, Y. K. Takahashi, T. Okhubo, and K. Hono, Appl. Phys. Lett. 89, 052505 (2006).
J. Nehra, V. D. Sudheesh, N. Lakshmi, and K. Venugopalan, Phys. Status Solidi RRL 7, 289 (2013).
Y. Takamura, R. Nakane, and S. Sugahara, J. Appl. Phys. 105, 07B109 (2009).
Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004).
J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).
W. H. Schreiner, D. E. Brandão, F. Ogiba, and J. V. Kunzler, J. Phys. Chem. Solids 43, 777 (1982).
S. Okamura, R. Goto, S. Sugimoto, N. Tezuka, and K. Inomata, J. Appl. Phys. 96, 6561 (2004).
E. Vilanova Vidal, H. Schneider, and G. Jakob, Phys. Rev. B 83, 174410 (2011).
J. Kudrnovský, V. Drchal, and I. Turek, Phys. Rev. B 88, 014422 (2013).
R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998).
I. I. Mazin, Phys. Rev. Lett. 83, 14271430 (1999).
P. Kharel, P. Thapa, P. Lukashev, R. F. Sabirianov, E. Y. Tsymbal, D. J. Sellmyer, and B. Nadgorny, Phys. Rev. B 83, 024415 (2011).
G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 45154532 (1982).
T. Y. Chen, S. X. Huang, and C. L. Chien, Phys. Rev. B 81, 214444 (2010).
B. S. D. C. S. Varaprasad, A. Srinivasan, Y. K. Takahashi, M. Hayashi, A. Rajanikanth, and K. Hono, Acta Mater. 60, 6257 (2012).
L. Bainsla, K. G. Suresh, A. K. Nigam, M. Manivel Raja, B. S. D. C. S. Varaprasad, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 116, 203902 (2014).
T. Löfwander, R. Grein, and M. Eschrig, Phys. Rev. Lett. 105, 207001 (2010).
A. Putnis, An Introduction to Mineral Sciences ( Cambridge University Press, 1992).

Data & Media loading...


Article metrics loading...



The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L2 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L2 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2  per formula unit. The room temperature resistivity is 175 Ω cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm−3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co(CrFe)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd