Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, “ Quantum key distribution at 1550 nm with twin superconducting single-photon detectors,” Appl. Phys. Lett. 89(24), 241129 (2006).
R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. Woo Nam, and G. S. Buller, “ Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 22662268 (2007).
R. M. Hoffman, “ The multiple uses of fluorescent proteins to visualize cancer in vivo,” Nat. Rev. Cancer 5, 796806 (2005).
D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “ Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “ Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192197 (2014).
G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “ Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001).
F. Najafi, A. Dane, F. Bellei, Z. Qingyuan, K. A. Sunter, A. N. McCaughan, and K. K. Berggren, “ Fabrication process yielding saturated nanowire single-photon detectors with 24-ps jitter,” IEEE J. Sel. Top. Quantum Electron. 21(2), 3800507 (2015).
F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “ Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210214 (2013).
D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “ High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 14401447 (2013).
Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “ Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673678 (2011).
L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “ Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
K. V. Smirnov, A. V. Divochiy, Yu. B. Vakhtomin, M. V. Sidorova, U. V. Karpova, P. V. Morozov, V. A. Seleznev, A. N. Zotova, and D. Yu. Vodolazov, “ Rise times of voltage pulses in NbN superconducting single-photon detectors,” Appl. Phys. Lett. 109, 052601 (2016).
D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. Mccaughan, and K. Karl, “ Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119, 234302 (2016).
Q. Y. Zhao, D. Zhu, and N. Calandri, “ A scalable single-photon imager using a single superconducting nanowire,” arXiv:1605.08693v1 (2016).
J. A. O'Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, “ Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector,” Appl. Phys. Lett. 98(20), 201116 (2011).
A. N. Mccaughan and K. K. Berggren, “ A superconducting-nanowire 3-terminal electronic device,” Nano Lett. 14, 57485753 (2014).
B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “ 781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444 (2006).
J. Kitaygorsky, S. Dorenbos, E. Reiger, R. Schouten, V. Zwiller, and R. Sobolewski, “ HEMT-based readout technique for dark- and photon-count studies in NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 19(3), 346349 (2009).

Data & Media loading...


Article metrics loading...



Detection jitter quantifies variance introduced by the detector in the determination of photon arrival time. It is a crucial performance parameter for systems using superconducting nanowire single photon detectors (SNSPDs). In this work, we have demonstrated that the detection timing jitter is limited in part by the spatial variation of the photon detection events along the length of the wire. We define this jitter source as a geometric jitter since it is related to the length and area of the SNSPD. To characterize the geometric jitter, we have constructed a differential cryogenic readout with less than 7 ps of an electronic jitter that can amplify the pulses generated from the two ends of an SNSPD. By differencing the measured arrival times of the two electrical pulses, we were able to partially cancel out the difference of the propagation times and thus reduce the uncertainty of the photon arrival time. We proved that the variation of the differential propagation time was a few ps for a 3 m × 3 m device, while it increased up to 50 ps for a 20 m × 20 m device. In a 20 m × 20 m large SNSPD, we achieved a 20% reduction in the overall detection timing jitter for detecting the telecom-wavelength photons by using the differential cryogenic readout.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd