Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, Proc. IEEE 100, 1951 (2012).
J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
Y. Li, Y. P. Zhong, L. Xu, J. J. Zhang, X. H. Xu, H. J. Sun, and X. S. Miao, Sci. Rep. 3, 1619 (2013).
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng.: R: Rep. 83, 1 (2014).
H. Y. Lee, P. S. Che, T. Y. Wu, Y. S. Che, C. C. Wan, P. J. Tzen, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, in IEEE International Electron Devices Meeting, 2008. IEDM 2008 (IEEE, 2008), pp. 14.
S. R. Lee, Y. B. Kim, M. Chang, K. M. Kim, C. B. Lee, J. H. Hur, G. S. Park, D. Lee, M. J. Lee, and C. J. Kim, in 2012 Symposium on VLSI Technology (VLSIT) (IEEE, 2012), pp. 7172.
X. J. Zhu, W. J. Su, Y. W. Liu, B. L. Hu, L. Pan, W. Lu, J. D. Zhang, and R. W. Li, Adv. Mater. 24, 3941 (2012).
J. Hajto, A. E. Owen, S. M. Gage, A. J. Snell, P. G. Lecomber, and M. J. Rose, Phys. Rev. Lett. 66, 1918 (1991).
J. M. Krans, J. M. V. Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. D. Jongh, Nature 375, 767 (1995).
H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature 395, 780 (1998).
A. Sattar, S. Fostner, and S. A. Brown, Phys. Rev. Lett. 111, 136808 (2013).
C. Chen, S. Gao, F. Zeng, G. Y. Wang, S. Z. Li, C. Song, and F. Pan, Appl. Phys. Lett. 103, 043510 (2013).
S. Gao, F. Zeng, C. Chen, G. Tang, Y. Lin, Z. Zheng, C. Song, and F. Pan, Nanotechnology 24, 335201 (2013).
Y. Li, S. Long, Y. Liu, C. Hu, J. Teng, Q. Liu, H. Lv, J. Suñé, and M. Liu, Nanoscale Res. Lett. 10, 420 (2015).
K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “ Quantized conductance atomic switch,” Nature 433, 47 (2005).
T. Tsuruoka, T. Hasegawa, K. Terabe, and M. Aono, Nanotechnology 23, 435705 (2012).
J. M. Krans, C. J. Muller, I. K. Yanson, T. C. M. Govaert, R. Hesper, and J. M. van Ruitenbeek, Phys. Rev. B 48, 14721 (1993).
Z. M. Liao, C. Hou, Q. Zhao, D. S. Wang, Y. D. Li, and D. P. Yu, Small 5, 2377 (2009).
A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Appl. Phys. Lett. 98, 233501 (2011).
J. R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, M. Kozicki, and N. Derhacobian, IEEE Electron Device Lett. 33, 257 (2012).
S. Guo, J. Hihath, and N. Tao, Nano Lett. 11, 927 (2011).
J. J. Zhang, H. J. Sun, Y. Li, Q. Wang, X. H. Xu, and X. S. Miao, Appl. Phys. Lett. 102, 183513 (2013).
T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, Nat. Mater. 10, 129 (2011).
T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, and M. Aono, Adv. Mater. 22, 1831 (2010).
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, Nat. Mater. 10, 591 (2011).
T. Ohno, T. Hasegawa, A. Nayak, T. Tsuruoka, J. K. Gimzewski, and M. Aono, Appl. Phys. Lett. 99, 203108 (2011).
A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J. K. Gimzewski, and M. Aono, Adv. Funct. Mater. 22, 3606 (2012).
F. Pan, S. Yin, and V. Subramanian, IEEE Electron Device Lett. 32, 949 (2011).
Z. Xu, Y. Bando, W. L. Wang, X. D. Bai, and D. Golberg, ACS Nano 4, 2515 (2010).
S. Menzel, U. Böttger, and R. Waser, J. Appl. Phys. 111, 014501 (2012).
A. S. Oblea, A. Timilsina, D. Moore, and K. A. Campbell, in International Joint Conference on Neural Networks, Barcelona, Spain (IEEE, 2010), pp. 13.
Y. Li, Y. P. Zhong, J. J. Zhang, X. H. Xu, Q. Wang, L. Xu, H. J. Sun, and X. S. Miao, Appl. Phys. Lett. 103, 043501 (2013).
W. Yi, S. E. Savel'ev, G. Medeiros-Ribeiro, F. Miao, M. X. Zhang, J. J. Yang, A. M. Bratkovsky, and R. S. Williams, Nat. Commun. 7, 11142 (2016).
S. Tappertzhofen, I. Valov, and R. Waser, Nanotechnology 23, 145703 (2012).
S. Tappertzhofen, E. Linn, L. Nielen, R. Rosezin, F. Lentz, R. Bruchhaus, I. Valov, U. Böttger, and R. Waser, Nanotechnology 22, 395203 (2011).

Data & Media loading...


Article metrics loading...



Quantized conductance was observed in a cation-migration-based memristor with the structure of Ag/AgInSbTe(AIST)/Ta. The conductance of the memristor exhibits stepwise increases in units of single quantum conductance (77.5 S), which is attributed to the formation of a metal filament with an atomic contact of different integer multiples. We designed a high speed circuit to conduct the pulse measurement. The quantized conductance can be obtained by applying voltage pulses in intervals as fast as 3 ns with constant amplitude. Considering that the quantized conductance can be modulated by different pulse widths, our results suggest that the AIST-based memristor is a robust candidate for multi-level data storage and neuromorphic computing systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd