Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
F. W. Wise, “ Lead salt quantum dots: The limit of strong quantum confinement,” Acc. Chem. Res. 33, 773780 (2000).
R. D. Schaller and V. I. Klimov, “ High efficiency carrier multiplication in pbse nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92, 186601 (2004).
R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “ High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1, 189194 (2005).
R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “ Highly efficient multiple exciton generation in colloidal pbse and pbs quantum dots,” Nano Lett. 5, 865871 (2005).
M. T. Trinh, A. J. Houtepen, J. M. Schins, T. Hanrath, J. Piris, W. Knulst, A. P. Goossens, and L. D. Siebbeles, “ In spite of recent doubts carrier multiplication does occur in pbse nanocrystals,” Nano Lett. 8, 17131718 (2008).
J. Pijpers, R. Ulbricht, K. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan, and M. Bonn, “ Assessment of carrier-multiplication efficiency in bulk pbse and pbs,” Nat. Phys. 5, 811814 (2009).
G. Nair, S. M. Geyer, L.-Y. Chang, and M. G. Bawendi, “ Carrier multiplication yields in pbs and pbse nanocrystals measured by transient photoluminescence,” Phys. Rev. B 78, 125325 (2008).
V. I. Klimov, A. Mikhailovsky, D. McBranch, C. Leatherdale, and M. G. Bawendi, “ Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287, 10111013 (2000).
R. Schaller, M. Petruska, and V. Klimov, “ Tunable near-infrared optical gain and amplified spontaneous emission using pbse nanocrystals,” J. Phys. Chem. B 107, 1376513768 (2003).
J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “ Evidence for barrierless auger recombination in pbse nanocrystals: A pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101, 217401 (2008).
S. Kilina and B. F. Habenicht, Excitonic and Vibrational Dynamics in Nanotechnology ( Pan Stanford Publishing, 2009).
B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “ Interband and intraband optical studies of pbse colloidal quantum dots,” J. Phys. Chem. B 106, 1063410640 (2002).
J. M. Harbold, H. Du, T. D. Krauss, K.-S. Cho, C. B. Murray, and F. W. Wise, “ Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal pbse nanocrystals,” Phys. Rev. B 72, 195312 (2005).
R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “ Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett. 95, 196401 (2005).
J. L. Machol, F. W. Wise, R. C. Patel, and D. B. Tanner, “ Vibronic quantum beats in pbs microcrystallites,” Phys. Rev. B 48, 2819 (1993).
T. D. Krauss and F. W. Wise, “ Coherent acoustic phonons in a semiconductor quantum dot,” Phys. Rev. Lett. 79, 5102 (1997).
T. D. Krauss and F. W. Wise, “ Raman-scattering study of exciton-phonon coupling in pbs nanocrystals,” Phys. Rev. B 55, 9860 (1997).
P. Ruello and V. E. Gusev, “ Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 2135 (2015).
Z. Zhang, Nano/Microscale Heat Transfer ( McGraw-Hill, New York, 2007).
X. Wang, S. Nie, J. Li, R. Clinite, M. Wartenbe, M. Martin, W. Liang, and J. Cao, “ Electronic grüneisen parameter and thermal expansion in ferromagnetic transition metal,” Appl. Phys. Lett. 92, 121918 (2008).
X. Wang, S. Nie, H. Park, J. Li, R. Clinite, R. Li, X. Wang, and J. Cao, “ Measurement of femtosecond electron pulse length and the temporal broadening due to space charge,” Rev. Sci. Instrum. 80, 013902 (2009).
A. Wolcott, V. Doyeux, C. A. Nelson, R. Gearba, K. W. Lei, K. G. Yager, A. D. Dolocan, K. Williams, D. Nguyen, and X.-Y. Zhu, “ Anomalously large polarization effect responsible for excitonic red shifts in pbse quantum dot solids,” J. Phys. Chem. Lett. 2, 795800 (2011).
S. Nie, X. Wang, J. Li, R. Clinite, and J. Cao, “ Femtosecond electron diffraction: Direct probe of ultrafast structural dynamics in metal films,” Microsc. Res. Tech. 72, 131143 (2009).
S. Novikova and N. K. Abrikosov, “ Investigation of the thermal expansion of lead chalcogenides,” Sov. Phys. Solid State 5, 13971398 (1964).
D. B. Sirdeshmukh, L. Sirdeshmukh, and K. Subhadra, Micro- and Macro-Properties of Solids ( Springer, 2006).
Y. Noda, S. Ohba, S. Sato, and Y. Saito, “ Charge distribution and atomic thermal vibration in lead chalcogenide crystals,” Acta Crystallogr., Sect. B: Struct. Sci. 39, 312317 (1983).
F. Rossi and T. Kuhn, “ Theory of ultrafast phenomena in photoexcited semiconductors,” Rev. Mod. Phys. 74, 895 (2002).
A. M. C. L. Tien and F. M. Gerner, Micro-Scale Energy Transport ( Taylor & Francis, Washington, DC, 1998).
G. M. Vanacore, J. Hu, W. Liang, S. Bietti, S. Sanguinetti, and A. H. Zewail, “ Diffraction of quantum dots reveals nanoscale ultrafast energy localization,” Nano Lett. 14, 61486154 (2014).
S. Schmitt-Rink, D. Miller, and D. S. Chemla, “ Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
D. Parkinson and J. Quarrington, “ The molar heats of lead sulphide, selenide and telluride in the temperature range 20 k to 260 k,” Proc. Phys. Soc., Sect. A 67, 569 (1954).
V. I. Klimov, “ Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion,” J. Phys. Chem. B 110, 1682716845 (2006).
J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “ Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation,” Phys. Rev. B 71, 125327 (2005).
T. Inoshita and H. Sakaki, “ Electron relaxation in a quantum dot: Significance of multiphonon processes,” Phys. Rev. B 46, 7260 (1992).
B. K. Ridley, Quantum Processes in Semiconductors ( Oxford University Press, 2013).
H. Park, X. Wang, S. Nie, R. Clinite, and J. Cao, “ Mechanism of coherent acoustic phonon generation under nonequilibrium conditions,” Phys. Rev. B 72, 100301 (2005).
Y. Zhang, X. Ke, C. Chen, J. Yang, and P. Kent, “ Thermodynamic properties of pbte, pbse, and pbs: First-principles study,” Phys. Rev. B 80, 024304 (2009).
K. K. Zhuravlev, J. M. Pietryga, R. K. Sander, and R. D. Schaller, “ Optical properties of pbse nanocrystal quantum dots under pressure,” Appl. Phys. Lett. 90, 43110 (2007).

Data & Media loading...


Article metrics loading...



We directly monitored the lattice dynamics in PbSe quantum dots (QD) induced by laser excitation using ultrafast electron diffraction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any significant phonon bottleneck effect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon-induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates significantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd