Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
X. Ma, L. Adamska, H. Yamaguchi, S. E. Yalcin, S. Tretiak, S. K. Doorn, and H. Htoon, “ Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes,” ACS Nano 8, 1078210789 (2014).
Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “ Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7, 715719 (2013).
S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham, and R. B. Weisman, “ Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes,” Science 330, 16561659 (2010).
F. Vialla, Y. Chassagneux, R. Ferreira, C. Roquelet, C. Diederichs, G. Cassabois, Ph. Roussignol, J. S. Lauret, and C. Voisin, “ Unifying the low-temperature photoluminescence spectra of carbon nanotubes: The role of acoustic phonon confinment,” Phys. Rev. Lett. 113, 057402 (2014).
M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, and A. Högele, “ Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502505 (2013).
I. Sarpkaya, Z. Zhang, W. W. Newman, X. Wang, J. Hone, C. W. Wong, and S. Strauf, “ Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes,” Nat. Commun. 4, 2152 (2013).
X. D. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “ Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10, 671675 (2015).
K. Iakoubovskii, N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “ Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination,” Appl. Phys. Lett. 89, 173108 (2006).
L. Cai, J. L. Bahr, Y. Yao, and J. M. Tour, “ Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers,” Chem. Mater. 14, 42354241 (2002).
S. Banerjee and S. S. Wong, “ Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis,” J. Phys. Chem. B 106, 1214412151 (2002).
M. Li, M. Boggs, T. P. Beebe, and C. P. Huang, “ Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound,” Carbon 46, 466475 (2008).
D. Ogrin, J. Chattopadhyay, A. K. Sadana, W. E. Billups, and A. R. Barron, “ Epoxidation and deoxygenation of single-walled carbon nanotubes: Quantification of epoxide defects,” J. Am. Chem. Soc. 128, 1132211323 (2006).
M. L. Sham and J. K. Kim, “ Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments,” Carbon 44, 768777 (2006).
A. I. Aria and M. Gharib, “ Reversible tuning of the wettability of carbon nanotube arrays: The effect of ultraviolet/ozone and vacuum pyrolysis treatments,” Langmuir 27, 90059011 (2011).
Z. Y. Chen, K. J. Ziegler, J. Shaver, R. H. Hauge, and R. E. Smalley, “ Cutting of single-walled carbon nanotubes by ozonolysis,” J. Phys. Chem. B 110, 1162411627 (2006).
D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu, and R. E. Smalley, “ Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K,” J. Am. Chem. Soc. 122, 23832384 (2000).
A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, “ Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering,” Nature 388, 257259 (1997).
J. M. Simmons, B. M. Nichols, S. E. Baker, M. S. Marcus, O. M. Castellini, C. S. Lee, R. J. Hamers, and M. A. Eriksson, “ Effect of ozone oxidation on single-walled carbon nanotubes,” J. Phys. Chem. B 110, 71137118 (2006).
M. R. Amer, S. W. Chang, and S. B. Cronin, “ Competing photocurrent mechanisms in quasi-metallic carbon nanotube pn devices,” Small 11, 31193123 (2015).
S. W. Chang, J. Theiss, J. Hazra, M. Aykol, R. Kapadia, and S. B. Cronin, “ Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions,” Appl. Phys. Lett. 107, 053107 (2015).
I. Sarpkaya, E. D. Ahmadi, G. D. Shepard, K. S. Mistry, J. L. Blackburn, and S. Strauf, “ Strong acoustic phonon localization in copolymer-wrapped carbon nanotubes,” ACS Nano 9, 63836393 (2015).

Data & Media loading...


Article metrics loading...



We report photoluminescence (PL) imaging and spectroscopy of air-suspended carbon nanotubes (CNTs) before and after exposure to a brief (20 s) UV/ozone treatment. These spectra show enhanced PL intensities in 10 out of 11 nanotubes that were measured, by as much as 5-fold. This enhancement in the luminescence efficiency is caused by oxygen defects which trap excitons. We also observe an average 3-fold increase in the -band Raman intensity further indicating the creation of defects. Previous demonstrations of oxygen doping have been carried out on surfactant-coated carbon nanotubes dissolved in solution, thus requiring substantial longer ozone/UV exposure times (∼15 h). Here, the ozone treatment is more efficient because of the surface exposure of the air-suspended CNTs. In addition to enhanced PL intensities, we observe narrowing of the emission linewidth by 3–10 nm. This ability to control and engineer defects in CNTs is important for realizing several optoelectronic applications such as light-emitting diodes and single photon sources.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd