Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, IEEE Electron Device Lett. 25, 117 (2004).
G. Koley and M. G. Spencer, Appl. Phys. Lett. 86, 042107 (2005).
J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 77, 250 (2000).
M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur, and H. Park, Appl. Phys. Lett. 68, 514 (1996).
T. Oka and T. Nozawa, IEEE Electron Device Lett. 29, 668 (2008).
S. Huang, X. Y. Liu, K. Wei, G. G. Liu, X. H. Wang, B. Sun, X. L. Yang, B. Shen, C. Liu, S. H. Liu, M. Y. Hua, S. Yang, and K. J. Chen, Appl. Phys. Lett. 106, 033507 (2015).
Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, IEEE Electron Device Lett. 26, 435 (2005).
X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. S. Shur, Electron. Lett. 36, 753 (2000).
Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, and M. Yanagihara, IEEE Trans. Electron Devices 54, 3393 (2007).
T. F. Chang, T. C. Hsiao, C. F. Huang, W. H. Kuo, S. F. Lin, and G. S. Samudra, IEEE Trans. Electron Devices 62, 339 (2015).
H. C. Chiu, L. Y. Peng, C. W. Yang, H. C. Wang, and F. T. Chien, in Proceedings of Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November 2014 (2014), p. 795.
Y. J. Han, S. Xue, and W. P. Guo, Jpn. J. Appl. Phys. 42, L1139 (2003).
S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992).
N. M. Johnson, R. D. Burnham, R. A. Street, and R. L. Thornton, Phys. Rev. B 33, 1102 (1986).
B. Monemar, P. P. Paskov, G. Pozina, C. Hemmingsson, J. P. Bergman, T. Kawashima, H. Amano, I. Akasaki, T. Paskova, S. Figge, D. Hommel, and A. Usui, Phys. Rev. Lett. 102, 235501 (2009).
L. Y. Su, F. Lee, and J. J. Huang, IEEE Trans. Electron Devices 61, 460 (2014).
C. Fleury, M. Capriotti, M. Rigato, O. Hilt, J. Wurfl, J. Derluyn, S. Steinhauer, A. Kock, G. Strasser, and D. Pogany, Microelectron. Reliab. 55, 1687 (2015).
S. J. Pearton, C. R. Abernathy, and F. Ren, Electron. Lett. 30, 527 (1994).
S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).

Data & Media loading...


Article metrics loading...



In this letter, we report a method by introducing hydrogen plasma treatment to realize normally-off -GaN/AlGaN/GaN HEMT devices. Instead of using etching technology, hydrogen plasma was adopted to compensate holes in the -GaN above the two dimensional electron gas (2DEG) channel to release electrons in the 2DEG channel and form high-resistivity area to reduce leakage current and increase gate control capability. The fabricated -GaN/AlGaN/GaN HEMT exhibits normally-off operation with a threshold voltage of 1.75 V, a subthreshold swing of 90 mV/dec, a maximum transconductance of 73.1 mS/mm, an ON/OFF ratio of 1 × 107, a breakdown voltage of 393 V, and a maximum drain current density of 188 mA/mm at a gate bias of 6 V. The comparison of the two processes of hydrogen plasma treatment and -GaN etching has also been made in this work.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd