Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Fan, “ Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908 (2002).
P. Chak, S. Pereira, and J. E. Sipe, “ Coupled-mode theory for periodic side-coupled microcavity and photonic crystal structures,” Phys. Rev. B 73, 035105 (2006).
A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “ Label-free, single-molecule detection with optical microcavities,” Science 317, 783 (2007).
J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “ On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46 (2010).
J. Li, R. Yu, C. Ding, and Y. Wu, “ PT-symmetry-induced evolution of sharp asymmetric line shapes and high-sensitivity refractive index sensors in a three-cavity array,” Phys. Rev. A 93, 023814 (2016).
H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, “ High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids,” Phys. Rev. Lett. 111, 127003 (2013).
Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “ Hybridizing ferromagnetic magnons and microwave photons in the quantum limit,” Phys. Rev. Lett. 113, 083603 (2014).
X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “ Strongly coupled magnons and cavity microwave photons,” Phys. Rev. Lett. 113, 156401 (2014).
M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, “ High-cooperativity cavity QED with magnons at microwave frequencies,” Phys. Rev. Appl. 2, 054002 (2014).
B. Bhoi, T. Cliff, I. S. Maksymov, M. Kostylev, R. Aiyar, N. Venkataramani, S. Prasad, and R. L. Stamps, “ Study of photon-magnon coupling in a YIG-film split-ring resonant system,” J. Appl. Phys. 116, 243906 (2014).
N. J. Lambert, J. A. Haigh, and A. J. Ferguson, “ Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity,” J. Appl. Phys. 117, 053910 (2015).
J. A. Haigh, N. J. Lambert, A. C. Doherty, and A. J. Ferguson, “ Dispersive readout of ferromagnetic resonance for strongly coupled magnons and microwave photons,” Phys. Rev. B 91, 104410 (2015).
B. M. Yao, Y. S. Gui, M. Worden, T. Hegmann, M. Xing, X. S. Chen, W. Lu, Y. Wroczynskyj, J. van Lierop, and C.-M. Hu, “ Quantifying the complex permittivity and permeability of magnetic nanoparticles,” Appl. Phys. Lett. 106, 142406 (2015).
L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, “ Spin pumping in electrodynamically coupled magnon-photon systems,” Phys. Rev. Lett. 114, 227201 (2015).
L. V. Abdurakhimov, Y. M. Bunkov, and D. Konstantinov, “ Normal-mode splitting in the coupled system of hybridized nuclear magnons and microwave photons,” Phys. Rev. Lett. 114, 226402 (2015).
B. M. Yao, Y. S. Gui, Y. Xiao, H. Guo, X. S. Chen, W. Lu, C. L. Chien, and C.-M. Hu, “ Theory and experiment on cavity magnon polariton in the 1D configuration,” Phys. Rev. B 92, 184407 (2015).
A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, “ Cavity optomagnonics with spin orbit coupled photons,” Phys. Rev. Lett. 166, 223601 (2016).
X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, “ Magnon dark modes and gradient memory,” Nat. Commun. 6, 8914 (2015).
Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “ Coherent coupling between a ferromagnetic magnon and a superconducting qubit,” Science 349, 405 (2015).
J.-M. Le Floch, N. Delhote, M. Aubourg, V. Madrangeas, D. Cros, S. Castelletto, and M. E. Tobar, “ Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance,” J. Appl. Phys. 119, 153901 (2016).
D. L. Creedon, J.-M. Le Floch, M. Goryachev, W. G. Farr, S. Castelletto, and M. E. Tobar, “ Strong coupling between P1 diamond impurity centers and a three-dimensional lumped photonic microwave cavity,” Phys. Rev. B 91, 140408(R) (2015).
See for further information on YIG fabrication and material properties.
M. Harder, L. Bai, C. Match, and C.-M. Hu, “ Study of the cavity-magnon-polariton transmission line shape,” Sci. China Phys. Mech. Astron. 59, 117511 (2016).
L. Bai, K. Blanchette, M. Harder, Y. Chen, X. Fan, J. Xiao, and C.-M. Hu, “ Control of the magnon-photon coupling,” IEEE Trans. Magn. 52, 1000107 (2016).

Data & Media loading...


Article metrics loading...



We experimentally realize an indirect coupling between two cavity modes via strong coupling with ferromagnetic resonance in Yttrium Iron Garnet. We find that some indirectly coupled modes of this system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. The properties of the indirectly coupled modes can be controlled using an external magnetic field or by tuning the cavity height. The relation between cavity transmission and the relative phase difference between cavity modes should be useful for developing tunable optical devices and improved information processing technologies.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd