Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, and R. J. Gutmann, Solid-State Electron. 44, 277301 (2000).
N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61(3), 605 (1989).
G. J. Riedel, J. W. Pomeroy, K. P. Hilton, J. O. Maclean, D. J. Wallis, M. J. Uren, T. Martin, U. Forsberg, A. Lundskog, A. Kakanakova-Georgieva, G. Pozina, E. Janzen, R. Lossy, R. Pazirandeh, F. Brunner, J. Wurfl, and M. Kuball, IEEE Electron Device Lett. 30(2), 103106 (2009).
S. Lee, R. Vetury, J. D. Brown, S. R. Gibb, W. Z. Cai, J. Sun, D. S. Green, and J. Shealy, in Proceedings of the 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008 (2008), pp. 446449.
S. Singhal, T. Li, A. Chaudhari, A. W. Hanson, R. Therrien, J. W. Johnson, W. Nagy, J. Marquart, P. Rajagopal, J. C. Roberts, E. L. Piner, I. C. Kizilyalli, and K. J. Linthicum, Microelectron. Reliab. 46(8), 12471253 (2006).
Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder, and P. Parikh, in Proceedings of the 2006 64th Device Research Conference, State College, PA, USA, 26–28 June 2006 (2006), pp. 151152.
D. Maier, M. Alomari, N. Grandjean, J.-F. Carlin, M.-A. Forte-Poisson, C. Dua, An. Chuvilin, D. Troadec, C. Gaquière, U. Kaiser, S. L. Delage, and E. Kohn, IEEE Trans. Device Mater. Reliab. 10(4), 427436 (2010).
J. Cho, E. Bozorg-Grayeli, D. H. Altman, M. Asheghi, and K. E. Goodson, IEEE Electron Device Lett. 33(3), 378380 (2012).
J. W. Pomeroy, M. Bernardoni, D. C. Dumka, D. M. Fanning, and M. Kuball, Appl. Phys. Lett. 104, 083513 (2014).
J. Cho, Z. Li, E. Bozorg-Grayeli, T. Kodama, D. Francis, F. Ejeckam, F. Faili, M. Asheghi, and K. E. Goodson, in Proceedings of 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 30 May–1 June 2012 (2012), pp. 435439.
H. Sun, R. B. Simon, J. W. Pomeroy, D. Francis, F. Faili, D. J. Twitchen, and M. Kuball, Appl. Phys. Lett. 106, 111906 (2015).
Y. Won, J. Cho, D. Agonafer, M. Asheghi, and K. E. Goodson, IEEE Trans. Compon., Packag., Manuf. Technol. 5(6), 737744 (2015).
Sentaurus Device User Guide Version K-2015.6 ( Synopsys, Mountain View, CA, USA, 2015).
D. I. Babic, IEEE Trans. Electron Devices 61(4), 10471053 (2014).
H. C. Nochetto, N. R. Jankowski, and A. Bar-Cohen, in Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011 (2011), pp. 241249.
J. Piprek, Nitride Semiconductor Devices: Principles and Simulation ( WILEY-VCH, 2007).
E. A. Douglas, F. Ren, and S. J. Pearton, J. Vac. Sci. Technol., B 29(2), 020603 (2011).
A. Manoi, J. W. Pomeroy, N. Killat, and M. Kuball, IEEE Electron Device Lett. 31(12), 13951397 (2010).
A. Sarua, H. Ji, K. P. Hilton, D. J. Wallis, M. J. Uren, T. Martin, and M. Kuball, IEEE Trans. Electron Devices 54(12), 31523158 (2007).
I. Ahmad, V. Kasisomayajula, M. Holtz, J. M. Berg, S. R. Kurtz, C. P. Tigges, A. A. Allerman, and A. G. Baca, Appl. Phys. Lett. 86, 173503 (2005).
J. Das, H. Oprins, H. Ji, A. Sarua, W. Ruythooren, J. Derluyn, M. Kuball, M. Germain, and G. Borghs, IEEE Trans. Electron Devices 53(11), 26962702 (2006).
J. W. Pomeroy and M. Kuball, in Proceedings of the 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014 (2014), pp. 14.

Data & Media loading...


Article metrics loading...



Here, we investigate the effects of thermal boundary resistance (TBR) and temperature-dependent thermal conductivity on the thermal resistance of GaN/substrate stacks. A combination of parameters such as substrates {diamond, silicon carbide, silicon, and sapphire}, thermal boundary resistance {10–60 m2K/GW}, heat source lengths {10 nm–20 m}, and power dissipation levels {1–8 W} are studied by using technology computer-aided design (TCAD) software Synopsys. Among diamond, silicon carbide, silicon, and sapphire substrates, the diamond provides the lowest thermal resistance due to its superior thermal conductivity. We report that due to non-zero thermal boundary resistance and localized heating in GaN-based high electron mobility transistors, an optimum separation between the heat source and substrate exists. For high power (i.e., 8 W) heat dissipation on high thermal conductive substrates (i.e., diamond), the optimum separation between the heat source and substrate becomes submicron thick (i.e., 500 nm), which reduces the hotspot temperature as much as 50 °C compared to conventional multi-micron thick case (i.e., 4 m). This is attributed to the thermal conductivity drop in GaN near the heat source. Improving the TBR between GaN and diamond increases temperature reduction by our further approach. Overall, we provide thermal management design guidelines for GaN-based devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd