Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Science 328, 480 (2010).
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. Taberna, and P. Simon, Nat. Nanotechnol. 5, 651 (2010).
X. Tian, M. Shi, X. Xu, M. Yan, L. Xu, A. Minhas-Khan, C. Han, L. He, and L. Mai, Adv. Mater. 27, 7476 (2015).
M. A. I. Shuvo, T.-L. (Bill) Tseng, M. A. R. Khan, H. Karim, P. Morton, D. Delfin, and Y. Lin, J. Appl. Phys. 114, 104306 (2013).
B. Hsia, J. Marschewski, S. Wang, J. B. In, C. Carraro, D. Poulikakos, C. P. Grigoropoulos, and R. Maboudian, Nanotechnology 25, 55401 (2014).
D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, and H. Durou, J. Power Sources 195, 1266 (2010).
B. Wang, M. Ahmed, B. Wood, and F. Iacopi, Appl. Phys. Lett. 108, 183903 (2016).
M. Toupin, T. Brousse, and D. Bélanger, Chem. Mater. 16, 3184 (2004).
W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, and C. S. Ozkan, Sci. Rep. 4, 4452 (2014).
A. K. Singh, D. Sarkar, G. Gopal Khan, and K. Mandal, Appl. Phys. Lett. 104, 133904 (2014).
Y.-M. Wang, D.-D. Zhao, Y.-Q. Zhao, C.-L. Xu, and H.-L. Li, RSC Adv. 2, 1074 (2012).
W. Si, C. Yan, Y. Chen, S. Oswald, L. Han, and O. G. Schmidt, Energy Environ. Sci. 6, 3218 (2013).
M. A. I. Shuvo, M. A. R. Khan, H. Karim, P. Morton, T. Wilson, and Y. Lin, ACS Appl. Mater. Interfaces 5, 7881 (2013).
Q. Liao, N. Li, S. Jin, G. Yang, and C. Wang, ACS Nano 9, 5310 (2015).
N. Kurra, N. A. Alhebshi, and H. N. Alshareef, Adv. Energy Mater. 5, 1401303 (2015).
Y. Q. Jiang, P. B. Wang, X. N. Zang, Y. Yang, A. Kozinda, and L. W. Lin, Nano Lett. 13, 3524 (2013).
Z. Bo, S. Mao, Z. J. Han, K. Cen, J. Chen, and K. (Ken) Ostrikov, Chem. Soc. Rev. 44, 2108 (2015).
M.-C. Hsiao, S.-H. Liao, M.-Y. Yen, C.-C. Teng, S.-H. Lee, N.-W. Pu, C.-A. Wang, Y. Sung, M.-D. Ger, C.-C. M. Ma, and M.-H. Hsiao, J. Mater. Chem. 20, 8496 (2010).
R. Zhang, Z. S. Wang, Z. D. Zhang, Z. G. Dai, L. L. Wang, H. Li, L. Zhou, Y. X. Shang, J. He, D. J. Fu, and J. R. Liu, Appl. Phys. Lett. 102, 193102 (2013).
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Nat. Commun. 3, 699 (2012).
K. Davami, Y. Jiang, J. Cortes, C. Lin, M. Shaygan, K. T. Turner, and I. Bargatin, Nanotechnology 27, 155701 (2016).
A. Zandiatashbar, G.-H. Lee, S. J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C. R. Picu, J. Hone, and N. Koratkar, Nat. Commun. 5, 3186 (2014).
R. P. Deo, N. S. Lawrence, and J. Wang, Analyst 129, 1076 (2004).
X. Niu, M. Lan, H. Zhao, and C. Chen, Anal. Chem. 85, 3561 (2013).
X. Xiao, T. Beechem, D. R. Wheeler, D. B. Burckel, and R. Polsky, Nanoscale 6, 2629 (2014).
A. Dutta and J. Datta, J. Mater. Chem. A 2, 3237 (2014).
W. W. Liu, C. X. Lu, X. L. Wang, K. Liang, and B. K. Tay, J. Mater. Chem. A 3, 624 (2015).
Z.-S. Wu, K. Parvez, X. Feng, and K. Müllen, Nat. Commun. 4, 2487 (2013).
X. Wang, Y. Yin, C. Hao, and Z. You, Carbon N. Y. 82, 436 (2015).
H. Jung, C. Ve Cheah, N. Jeong, and J. Lee, Appl. Phys. Lett. 105, 053902 (2014).
K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei, Energy Environ. Sci. 5, 8384 (2012).
H. Wu, K. Jiang, S. Gu, H. Yang, Z. Lou, D. Chen, and G. Shen, Nano Res. 8, 3544 (2015).
M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Science 335, 1326 (2012).
P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, ACS Nano 7, 2617 (2013).
K. Grigoras, J. Keskinen, L. Grönberg, E. Yli-Rantala, S. Laakso, H. Välimäki, P. Kauranen, J. Ahopelto, and M. Prunnila, Nano Energy 26, 340 (2016).
C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B. K. Tay, H. Huang, H. Zhang, W. Mai, and H. J. Fan, Adv. Mater. 27, 4566 (2015).

Data & Media loading...


Article metrics loading...



Heterostructure of graphene nanowalls (GNW) supported Ni thin-layer was fabricated to form an on-chip pseudocapacitor via a standard microelectromechanical system process. Beyond a high-rate capability of the micro-supercapacitors, a large specific energy density of 2.1 mW h cm−3 and power density up to 5.91 W cm−3 have been achieved, which are two orders of magnitude higher than those commercial electrolytic capacitors and thin-film batteries, respectively. Rational analysis revealed a rapid GNW growth originated from the Pt current collector embedment by catalyzing hydrocarbon dissociating. The unique concept in our design includes that Ni was evaporated onto GNW to serve as both the shadow mask for microelectrode patterning and subsequently a precursor to be electrochemically converted into pseudo-capacitive Ni(OH) for capacitance enhancing. Addressing the challenge to uniformly coat in complex nanoporous structures, this strategy renders a conformal deposition of pseudo-capacitive material on individual graphene nanoflakes, leading to efficient merits harnessing of huge accessible surfaces from the conductive GNW networks and great capacitance of the Ni-based active materials for high performance delivery. The proof of concept can be potentially extended to other transition metals and paves the way to further apply GNW hybrids in diverse microsystems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd