Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 114, 071101 (2013);
J. Cho, E. F. Schubert, and J. K. Kim, Laser Photonics Rev. 7(3), 408 (2013).
P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).
S. Y. Karpov, Opt. Quantum Electron. 47(6), 1293 (2015).
T. Langer, A. Chernikov, D. Kalincev, M. Gerhard, H. Bremers, U. Rossow, M. Koch, and A. Hangleiter, Appl. Phys. Lett. 103, 202106 (2013).
J. Piprek, F. Römer, and B. Witzigmann, Appl. Phys. Lett. 106, 101101 (2015).
D. S. Meyaard, G.-B. Lin, J. Cho, E. F. Schubert, H. Shim, S.-H. Han, M.-H. Kim, C. Sone, and Y. S. Kim, Appl. Phys. Lett. 102, 251114 (2013).
J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
D. Hanser, L. Liu, E. A. Preble, K. Udwary, T. Paskova, and K. R. Evans, J. Cryst. Growth 310, 3953 (2008).
R. A. Oliver, J. Sumner, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 106, 054319 (2009).
T. J. Badcock, P. Dawson, M. J. Davies, M. J. Kappers, F. C.-P. Massabuau, F. Oehler, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 115, 113505 (2014).
A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, Phys. Rev. B 68, 045331 (2003).
T. Langer, H.-G. Pietscher, F. A. Ketzer, H. Jönen, H. Bremers, U. Rossow, D. Menzel, and A. Hangleiter, Phys. Rev. B 90, 205302 (2014).
M. F. Schubert, Q. Dai, J. Xu, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 95, 191105 (2009).
See for simulations performed using SiLENSe software.
G.-B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, Appl. Phys Lett. 100, 161106 (2012).
K.-S. Kim, D.-P. Han, H.-S. Kim, and J.-I. Shim, Appl. Phys. Lett. 104, 091110 (2014).
M. J. Davies, P. Dawson, S. Hammersley, T. Zhu, M. J. Kappers, C. J. Humphreys, and R. A. Oliver, Appl. Phys. Lett. 108, 252101 (2016).
B. Sermage, F. Alexandre, J. Beerens, and P. Tronc, Superlatt. Micros. 6(4), 373 (1989).
S. Schulz, D. P. Tanner, E. P. O'Reilly, M. A. Caro, T. L. Martin, P. A. J. Bagot, M. P. Moody, F. Tang, J. T. Griffiths, F. Oehler, M. J. Kappers, R. A. Oliver, C. J. Humphreys, D. Sutherland, M. J. Davies, and P. Dawson, Phys. Rev. B 92, 235419 (2015).
M. J. Davies, T. J. Badcock, P. Dawson, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Appl. Phys. Lett. 102, 022106 (2013).
T. J. Badcock, P. Dawson, M. J. Kappers, C. McAleese, J. L. Hollander, C. F. Johnston, D. V. Sridhara Rao, A. M. Sanchez, and C. J. Humphreys, J. Appl. Phys. 105, 123112 (2009).
D. S. Citrin, Phys. Rev. B 47, 3832 (1993).
P. Dawson, S. Schulz, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 119, 181505 (2016).
D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
S. Schulz, M. A. Caro, C. Coughlan, and E. P. O'Reilly, Phys. Rev. B 91, 035439 (2015).
D. Macdonald and A. Cuevas, Phys. Rev. B 67, 075203 (2003).
K. W. Williams, N. R. Monahan, D. D. Koleske, M. H. Crawford, and X.-Y. Zhu, Appl. Phys. Lett. 108, 141105 (2016).
B. Galler, H.-J. Lugauer, M. Binder, R. Hollweck, Y. Folwill, A. Nirschl, A. Gomez-Iglesias, B. Hahn, J. Wagner, and M. Sabathil, Appl. Phys. Exp. 6, 112101 (2013).
E. C. Le Ru, J. Fack, and R. Murray, Phys Rev. B 67, 245318 (2003);
P. Dawson, O. Rubel, D. Baranovskii, K. Pierz, P. Thomas, and E. O. Göbel, Phys Rev. B 72, 235301 (2005).

Data & Media loading...


Article metrics loading...



We study the photoluminescence internal quantum efficiency (IQE) and recombination dynamics in a pair of polar and non-polar InGaN/GaN quantum well (QW) light-emitting diode (LED) structures as a function of excess carrier density and temperature. In the polar LED at 293 K, the variation of radiative and non-radiative lifetimes is well described by a modified ABC type model which accounts for the background carrier concentration in the QWs due to unintentional doping. As the temperature is reduced, the sensitivity of the radiative lifetime to excess carrier density becomes progressively weaker. We attribute this behaviour to the reduced mobility of the localised electrons and holes at low temperatures, resulting in a more monomolecular like radiative process. Thus we propose that in polar QWs, the degree of carrier localisation determines the sensitivity of the radiative lifetime to the excess carrier density. In the non-polar LED, the radiative lifetime is independent of excitation density at room temperature, consistent with a wholly excitonic recombination mechanism. These findings have significance for the interpretation of LED efficiency data within the context of the ABC recombination model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd