Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. N. Favennec, H. L'Halidon, M. Salvi, D. Moutonnet, and Y. Le Guillou, Electron. Lett. 25, 718 (1989).
R. Birkhahn, M. Garter, and A. J. Steckl, Appl. Phys. Lett. 74, 2161 (1999).
A. J. Neuhalfen and B. W. Wessels, Appl. Phys. Lett. 60, 2657 (1992).
J. M. Zavada and D. Zhang, Solid-State Electron. 38, 1285 (1995).
M. Pan and A. J. Steckl, Appl. Phys. Lett. 83, 9 (2003).
A. J. Steckl, M. J. Garter, D. S. Lee, J. Heikenfeld, and R. H. Birkhahn, Appl. Phys. Lett. 75, 2184 (1999).
T. Arai, D. Timmerman, R. Wakamatsu, D. Lee, A. Koizumi, and Y. Fujiwara, J. Lumin. 158, 70 (2015).
R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, Appl. Phys. Lett. 65, 992 (1994).
S. Kim, S. J. Rhee, X. Li, J. J. Coleman, S. G. Bishop, and P. B. Klein, Appl. Phys. Lett. 76, 2403 (2000).
D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, Appl. Phys. Lett. 72, 1244 (1998).
X. Wu, U. Hommerich, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, R. Schwartz, R. G. Wilson, and J. M. Zavada, Appl. Phys. Lett. 70, 2126 (1997).
C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, Appl. Phys. Lett. 89, 151903 (2006).
R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, Appl. Phys. Lett. 97, 141109 (2010).
A. Braud, Excitation Mechanisms of RE Ions in Semiconductors, Topics in Applied Physics: Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications Vol. 124, edited by K. O'Donnell and V. Dierolf ( Springer, The Netherlands, 2010), pp. 269308.
R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, Appl. Phys. Lett. 95, 111109 (2009).
Z. Y. Sun, J. Li, W. P. Zhao, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 109, 052101 (2016).
R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, Electron. Lett. 23, 1026 (1987).
E. Desurvire, J. Simpson, and P. C. Becker, Opt. Lett. 12, 888 (1987).
J. D. B. Bradley and M. Pollnau, Laser Photonics Rev. 5, 368403 (2011).
R. W. Fenn, J. D. Mill, S. A. Clough, L. S. Rothman, W. O. Gallery, E. P. Shettle, R. E. Good, F. E. Volz, and F. X. Kneizys, “ Optical and infrared properties of the atmosphere,” in Handbook of Geophysics and the Space Environment, edited by A. S. Jursa (Air Force Geophysics Laboratory, Hanscom AFB, MA, 1985),
J. A. Zuclich, D. J. Lund, and B. E. Stuck, Health Phys. 92, 15 (2007).
H. Shibata, Y. Waseda, H. Ohta, K. Kiyomi, K. Shimoyama, K. Fujito, H. Nagaoka, Y. Kagamitani, R. Simura, and T. Fukuda, Mater. Trans. 48, 2782 (2007).
W. Koechner, Solid-State Laser Engineering, 5th ed. ( Spring-Verlag, Berlin, Heidelberg, 1999).
G. Huber, C. Krankel, and K. Petermann, “ Solid-state lasers: Status and future,” J. Opt. Soc. Am. 27, B93 (2010).
J. Vetrovec, “ Solid-state high-energy laser,” Proc. SPIE 4632, 104 (2002).
A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007).
V. Prajzler, Z. Burian, I. Hüttel, J. Špirková, J. Hamáček, J. Oswald, J. Zavadil, and V. Peřina, Acta Polytech. 46, 49 (2006).
I. B. Gallo, A. Braud, and A. R. Zanatta, Opt. Express 21, 28394 (2013).
C. Strohhöfer and A. Polman, Opt. Mater. 21, 705 (2003).
K. Uwai, H. Nakagome, and K. Takahei, Appl. Phys. Lett. 50, 977 (1987).
C. Grivas, Prog. Quantum Electron. 45–46, 3 (2016).
W. M. Jadwisienczak, J. Wang, H. Tanaka, J. Wu, R. Palai, H. Huhtinen, and A. Anders, J. Rare Earth 28, 931 (2010).
K. C. Mishra, V. Eyert, and P. C. Schmidt, Z. Phys. Chem. 221, 1663 (2007).
U. Wahl, E. Alves, K. Lorenz, J. G. Correia, T. Monteiro, B. De Vries, A. Vantomme, and R. Vianden, Mater. Sci. Eng., B 105, 132 (2003).
I. W. Feng, W. P. Zhao, J. Li, J. Y. Lin, H. X. Jiang, and J. Zavada, Appl. Opt. 52, 5426 (2013).
D. K. George, M. D. Hawkins, M. McLaren, H. X. Jiang, J. Y. Lin, J. M. Zavada, and N. Q. Vinh, Appl. Phys. Lett. 107, 171105 (2015).

Data & Media loading...


Article metrics loading...



The Erbium (Er) doped GaN is a promising gain medium for optical amplifiers and solid-state high energy lasers due to its high thermal conductivity, wide bandgap, mechanical hardness, and ability to emit in the highly useful 1.5 m window. Finding the mechanisms to enhance the optical absorption efficiency at a resonant pump wavelength and emission efficiency at 1.5 m is highly desirable. We report here the synthesis of the Er and Yb co-doped GaN epilayers (Er + Yb:GaN) by metal-organic chemical vapor deposition (MOCVD). It was observed that the 1.5 m emission intensity of the Er doped GaN (Er:GaN) under 980 nm resonant pump can be boosted by a factor of 7 by co-doping the sample with Yb. The temperature dependent PL emission at 1.5 m in the Er + Yb:GaN epilayers under an above bandgap excitation revealed a small thermal quenching of 12% from 10 to 300 K. From these results, it can be inferred that the process of energy transfer from Yb3+ to Er3+ ions is highly efficient, and non-radiative recombination channels are limited in the Er + Yb:GaN epilayers synthesized by MOCVD. Our results point to an effective way to improve the emission efficiency of the Er doped GaN for optical amplification and lasing applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd