Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, and S. Kim, Adv. Mater. 23(31), 35113516 (2011).
P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, Appl. Phys. Lett. 78(23), 35923594 (2001).
L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88(8), 083502 (2006).
V. Leonov and R. J. M. Vullers, J. Renewable Sustainable Energy 1(6), 062701 (2009).
M. Stoppa and A. Chiolerio, Sensors 14(7), 1195711992 (2014).
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, Adv. Mater. 26(31), 53105336 (2014).
D.-W. Park, A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, R. Pashaie, S. Thongpang, Z. Ma, and J. C. Williams, Nat. Commun. 5, 5258 (2014).
T. Stieglitz, M. Schuetter, and K. P. Koch, IEEE Eng. Med. Biol. Mag. 24(5), 5865 (2005).
T. Stieglitz, Sens. Actuators, A 90(3), 203211 (2001).
T. Y. Chang, V. G. Yadav, S. De Leo, A. Mohedas, B. Rajalingam, C.-L. Chen, S. Selvarasah, M. R. Dokmeci, and A. Khademhosseini, Langmuir 23(23), 1171811725 (2007).
J.-M. Hsu, L. Rieth, R. A. Normann, P. Tathireddy, and F. Solzbacher, IEEE Trans. Biomed. Eng. 56(1), 2329 (2009).
X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, Appl. Phys. Lett. 96(1), 011906 (2010).
S. Sabri, P. Levesque, C. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, Appl. Phys. Lett. 95(24), 242104 (2009).
S. R. Saudari, Y. J. Lin, Y. Lai, and C. R. Kagan, Adv. Mater. 22(44), 50635068 (2010).
P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, Nano Lett. 11(1), 132137 (2011).
P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. Thong, C. T. Lim, and K. P. Loh, Nano Lett. 11(12), 52405246 (2011).
L. H. Hess, M. Jansen, V. Maybeck, M. V. Hauf, M. Seifert, M. Stutzmann, I. D. Sharp, A. Offenhäusser, and J. A. Garrido, Adv. Mater. 23(43), 50455049 (2011).
S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, and A. A. Balandin, Nano Lett. 12(5), 22942298 (2012).
G. Xu, J. Abbott, L. Qin, K. Y. M. Yeung, Y. Song, H. Yoon, J. Kong, and D. Ham, Nat. Commun. 5, 4866 (2014).
D.-W. Park, S. Mikael, T.-H. Chang, S. Gong, and Z. Ma, Appl. Phys. Lett. 106(10), 102106 (2015).
T. Trantidou, T. Prodromakis, and C. Toumazou, Appl. Surf. Sci. 261, 4351 (2012).
Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, Nano Lett. 11(2), 767771 (2011).
A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui, M. Maillard, B. Berge, J.-C. Robert, and J. Legrand, Appl. Phys. Lett. 94(15), 152901 (2009).
B. J. Kim, B. Chen, M. Gupta, and E. Meng, J. Micromech. Microeng. 24(6), 065003 (2014).
A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, and J. Legrand, Appl. Phys. A 106(4), 909913 (2012).
H.-S. Noh, P. J. Hesketh, and G. C. Frye-Mason, J. Microelectromech. Syst. 11(6), 718725 (2002).
Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, and J. K. Chang, J. Micromech. Microeng. 13(5), 768 (2003).
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324(5928), 768771 (2009).
J. Bai, L. Liao, H. Zhou, R. Cheng, L. Liu, Y. Huang, and X. Duan, Nano Lett. 11(6), 25552559 (2011).
S. M. Song, J. H. Bong, W. S. Hwang, and B. J. Cho, Sci. Rep. 6, 25392 (2016).
J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, Nat. Neurosci. 14(12), 15991605 (2011).
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanoechnol. 7(11), 699712 (2012).
G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, and K. Watanabe, ACS Nano 7(9), 79317936 (2013).
Y. H. Jung, T.-H. Chang, H. Zhang, C. Yao, Q. Zheng, V. W. Yang, H. Mi, M. Kim, S. J. Cho, D.-W. Park, H. Jiang, J. Lee, Y. Qiu, W. Zhou, Z. Cai, S. Gong, and Z. Ma, Nat. Commun. 6, 7170 (2015).
M. Cho, J.-H. Seo, D.-W. Park, W. Zhou, and Z. Ma, Appl. Phys. Lett. 108(23), 233505 (2016).

Data & Media loading...


Article metrics loading...



Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a I/I ratio of 533.5 cm2/V s, 58.1 S, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd