Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/3/10.1063/1.4959254
1.
S. Nakamura, Science 281, 956 (1998).
http://dx.doi.org/10.1126/science.281.5379.956
2.
S. Nakamura, Annu. Rev. Mater. Sci. 28, 125 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.125
3.
U. K. Mishra, P. Parikh, and Y.-F. Wu, Proc. IEEE 90, 1022 (2002).
http://dx.doi.org/10.1109/JPROC.2002.1021567
4.
C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, Nano Lett. 16, 1056 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b04190
5.
M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
http://dx.doi.org/10.1063/1.1868059
6.
L. Liu and J. H. Edgar, Mater. Sci. Eng. R Rep. 37, 61 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00008-6
7.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
8.
B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Nat. Nanotechnol. 9, 262 (2014).
http://dx.doi.org/10.1038/nnano.2014.25
9.
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
http://dx.doi.org/10.1021/nl201874w
10.
P. Gupta, A. A. Rahman, S. Subramanian, S. Gupta, A. Thamizhavel, T. Orlova, S. Rouvimov, S. Vishwanath, V. Protasenko, M. R. Laskar, H. G. Xing, D. Jena, and A. Bhattacharya, Sci. Rep. 6, 23708 (2016).
http://dx.doi.org/10.1038/srep23708
11.
A. Yamada, K. P. Ho, T. Maruyama, and K. Akimoto, Appl. Phys. A Mater. Sci. Process. 69, 89 (1999).
http://dx.doi.org/10.1007/s003390050976
12.
D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O'Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, ACS Nano 10, 3580 (2016).
http://dx.doi.org/10.1021/acsnano.5b08008
13.
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2015).
http://dx.doi.org/10.1021/acsnano.5b01281
14.
P. D. C. King, T. D. Veal, C. Kendrick, L. Bailey, S. Durbin, and C. F. McConville, Phys. Rev. B 78, 033308 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.033308
15.
G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morkoç, W. R. L. Lambrecht, and B. Segall, Appl. Phys. Lett. 65, 610 (1994).
http://dx.doi.org/10.1063/1.112247
16.
P. D. C. King, T. D. Veal, P. H. Jefferson, C. F. McConville, P. J. Parbrook, and H. Lu, Appl. Phys. Lett. 90, 132105 (2007).
http://dx.doi.org/10.1063/1.2716994
17.
T. N. Bhat, M. Kumar, M. K. Rajpalke, B. Roul, S. B. Krupanidhi, and N. Sinha, J. Appl. Phys. 109, 123707 (2011).
http://dx.doi.org/10.1063/1.3596520
18.
J. W. Liu, A. Kobayashi, S. Toyoda, H. Kamada, A. Kikuchi, J. Ohta, H. Fujioka, H. Kumigashira, and M. Oshima, Phys. Status Solidi Basic Res. 248, 956 (2011).
http://dx.doi.org/10.1002/pssb.201046459
19.
M.-H. Chiu, C. Zhang, H.-W. Shiu, C.-P. Chuu, C.-H. Chen, C.-Y. S. Chang, C.-H. Chen, M.-Y. Chou, C.-K. Shih, and L.-J. Li, Nat. Commun. 6, 7666 (2015).
http://dx.doi.org/10.1038/ncomms8666
20.
Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. Te Lin, K. Di Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
21.
J.-U. Lee, K. Kim, S. Han, G. H. Ryu, Z. Lee, and H. Cheong, ACS Nano 10, 1948 (2016).
http://dx.doi.org/10.1021/acsnano.5b05831
22.
H. Liu and D. Chi, Sci. Rep. 5, 11756 (2015).
http://dx.doi.org/10.1038/srep11756
23.
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
24.
V. Kranthi Kumar, S. Dhar, T. H. Choudhury, S. A. Shivashankar, and S. Raghavan, Nanoscale 7, 7802 (2015).
http://dx.doi.org/10.1039/C4NR07080A
25.
B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare, and A. K. Sood, Phys. Rev. B 85, 161403(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.161403
26.
K. F. Mak and J. Shan, Nat. Photonics 10, 216 (2016).
http://dx.doi.org/10.1038/nphoton.2015.282
27.
W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. Van Der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood, Phys. Rev. Lett. 111, 106801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106801
28.
M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Nat. Mater. 13, 1091 (2014).
http://dx.doi.org/10.1038/nmat4061
29.
S. Q. Zhou, M. F. Wu, L. N. Hou, S. D. Yao, H. J. Ma, R. Nie, Y. Z. Tong, Z. J. Yang, T. J. Yu, and G. Y. Zhang, J. Cryst. Growth 263, 35 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.11.046
30.
J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997).
http://dx.doi.org/10.1063/1.120191
31.
C. S. Fadley, Surf. Interface Anal. 40, 1579 (2008).
http://dx.doi.org/10.1002/sia.2902
32.
E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
http://dx.doi.org/10.1103/PhysRevLett.44.1620
33.
E. W. Lee II, C. H. Lee, P. K. Paul, L. Ma, W. D. McCulloch, S. Krishnamoorthy, Y. Wu, A. R. Arehart, and S. Rajan, Appl. Phys. Lett. 107, 103505 (2015).
http://dx.doi.org/10.1063/1.4930234
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/3/10.1063/1.4959254
Loading
/content/aip/journal/apl/109/3/10.1063/1.4959254
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/3/10.1063/1.4959254
2016-07-20
2016-09-25

Abstract

We report the band alignment parameters of the GaN/single-layer (SL) MoS heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS/c-sapphire. We confirm that the MoS is an SL by measuring the separation and position of room temperature micro-Raman E1 and A1 modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/3/1.4959254.html;jsessionid=NsqD4blW5SUSxi1KNMNNgMlS.x-aip-live-06?itemId=/content/aip/journal/apl/109/3/10.1063/1.4959254&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/3/10.1063/1.4959254&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/3/10.1063/1.4959254'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,