Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. H. Bauer, R. Bruggemann, S. Tardon, S. Vignoli, and R. Kniese, Thin Solid Films 480, 410 (2005).
J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, Appl. Phys. Lett. 80, 4540 (2002).
Solar Frontier, “ Solar Frontier achieves world record thin-film solar cell efficiency: 22.3%,” (Press Release, 2015).
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9, 28 (2015).
S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, Prog. Photovoltaics 22, 821 (2014).
R. Herberholz, V. Nadenau, U. Ruhle, C. Koble, H. W. Schock, and B. Dimmler, Sol. Energy Mater. Sol. Cells 49, 227 (1997).
J. Pohl and K. Albe, Phys. Rev. B 87, 245203 (2013).
B. Huang, S. Y. Chen, H. X. Deng, L. W. Wang, M. A. Contreras, R. Noufi, and S. H. Wei, IEEE J. Photovoltaics 4, 477 (2014).
W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
J. Bekaert, R. Saniz, B. Partoens, and D. Lamoen, Phys. Chem. Chem. Phys. 16, 22299 (2014).
A. Krysztopa, M. Igalson, J. K. Larsen, Y. Aida, L. Guetay, and S. Siebientritt, J. Phys. D: Appl. Phys. 45, 335101 (2012).
J. Krustok, J. H. Schon, H. Collan, M. Yakushev, J. Madasson, and E. Bucher, J. Appl. Phys. 86, 364 (1999).
A. Meeder, D. F. Marron, V. Chu, J. P. Conde, A. Jager-Waldau, A. Rumberg, and M. C. Lux-Steiner, Thin Solid Films 403, 495 (2002).
A. Bauknecht, S. Siebentritt, J. Albert, and M. C. Lux-Steiner, J. Appl. Phys. 89, 4391 (2001).
L. Gutay, J. K. Larsen, J. Guillot, M. Muller, F. Bertram, J. Christen, and S. Siebentritt, J. Cryst. Growth 315, 82 (2011).
A. Bauknecht, S. Siebentritt, J. Albert, Y. Tomm, and M. C. Lux-Steiner, Jpn. J. Appl. Phys., Part 1 39, 322 (2000).
S. Chichibu, Y. Harada, M. Uchida, T. Wakiyama, S. Matsumoto, S. Shirakata, S. Isomura, and H. Higuchi, J. Appl. Phys. 76, 3009 (1994).
S. Siebentritt, M. Igalson, C. Persson, and S. Lany, Prog. Photovoltaics 18, 390 (2010).
E. Zacks and A. Halperin, Phys. Rev. B 6, 3072 (1972).
D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. 140, A202 (1965).
C. Persson, Appl. Phys. Lett. 93, 072106 (2008).
N. N. Syrbu, M. Bogdanash, V. E. Tezlevan, and I. Mushcutariu, Physica B 229, 199 (1997).
W. Grieshaber, E. F. Schubert, I. D. Goepfert, R. F. Karlicek, M. J. Schurman, and C. Tran, J. Appl. Phys. 80, 4615 (1996).
H. B. Bebb and E. W. Williams, “ Chapter 4 photoluminescence I: Theory,” in Semiconductors and Semimetals, edited by R. K. Willardson and C. B. Albert ( Elsevier, 1972), Vol. 8, pp. 181320.
M. A. Reshchikov, J. Appl. Phys. 115, 012010 (2014).
S. Schuler, S. Siebentritt, S. Nishiwaki, N. Rega, J. Beckmann, S. Brehme, and M. C. Lux-Steiner, Phys. Rev. B 69, 045210 (2004).

Data & Media loading...


Article metrics loading...



Recent defect calculations suggest that the open circuit voltage of CuGaSe solar cells can be limited by deep intrinsic electron traps by Ga antisites and their complexes with Cu-vacancies. To gain experimental evidence, two radiative defect transitions at 1.10 eV and 1.24 eV are characterized by steady-state photoluminescence on epitaxial-grown CuGaSe thin films. Cu-rich samples are studied, since they show highest crystal quality, exciton luminescence, and no potential fluctuations. Variations of the laser intensity and temperature dependent measurements suggest that emission occurs from two deep donor-like levels into the same shallow acceptor. At 10 K, power-law exponents of 1 (low excitation regime) and 1/2 (high excitation regime) are observed identically for both transitions. The theory and a fitting function for the double power law is derived. It is concluded that the acceptor becomes saturated by excess carriers which changes the exponent of all transitions. Activation energies determined from the temperature quenching depend on the excitation level and show unexpected values of 600 meV and higher. The thermal activation of non-radiative processes can explain the distortion of the ionization energies. Both the deep levels play a major role as radiative and non-radiative recombination centers for electrons and can be detrimental for photovoltaic applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd