Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/5/10.1063/1.4960593
1.
D. Laundy, S. G. Alcock, L. Alianelli, J. P. Sutter, K. S. J. Sawhney, and O. Chubar, “ Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation,” SPIE 9209, 920903 (2014).
http://dx.doi.org/10.1117/12.2062903
2.
P. Kirkpatrick and A. V. Baez, “ Formation of optical images by X-rays,” Journal Opt. Soc. Am. 38, 766774 (1948).
http://dx.doi.org/10.1364/JOSA.38.000766
3.
C. Morawe, E. Ziegler, J. Peffena, and I. V. Kozhevnikov, “ Design and fabrication of depth-graded X-ray multilayers,” Nucl. Instrum. Methods A 493, 189198 (2002).
http://dx.doi.org/10.1016/S0168-9002(02)01570-X
4.
A. Authier, Dynamical Theory of X-ray Diffraction ( Oxford University Press, New York, 2001).
5.
A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “ A compound refractive lens for focusing high-energy X-rays,” Nature 384, 4951 (1996).
http://dx.doi.org/10.1038/384049a0
6.
H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano et al., “ Breaking the 10 nm barrier in hard-X-ray focusing,” Nat. Phys. 6, 122125 (2010).
http://dx.doi.org/10.1038/nphys1457
7.
R. Talman, “ Possibility of corrector plate tuning of x-ray focusing,” Appl. Opt. 48, 25222535 (2009).
http://dx.doi.org/10.1364/AO.48.002522
8.
J. H. Crocker, “ Engineering the COSTAR,” Opt. Photonics News 4(11), 22 (1993).
http://dx.doi.org/10.1364/OPN.4.11.000022
9.
S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “ The diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods A 616, 224228 (2010).
http://dx.doi.org/10.1016/j.nima.2009.10.137
10.
K. Sawhney, H. Wang, J. Sutter, S. Alcock, and S. Berujon, “ At-wavelength metrology of X-ray optics at diamond light source,” Synchrotron Radiat. News 26(5), 17 (2013).
http://dx.doi.org/10.1080/08940886.2013.832586
11.
D. Laundy, L. Alianelli, J. Sutter, G. Evans, and K. Sawhney, “ Surface profiling of X-ray mirrors for shaping focused beams,” Opt. Express 23, 15761584 (2015).
http://dx.doi.org/10.1364/OE.23.001576
12.
K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “ A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387 (2010).
http://dx.doi.org/10.1063/1.3463220
13.
D. Laundy, K. Sawhney, I. Nistea, S. G. Alcock, I. Pape, J. Sutter, L. Alianelli, and G. Evans, “ Development of a multi-lane X-ray mirror providing variable beam sizes,” Rev. Sci. Instrum. 87, 051802 (2016).
http://dx.doi.org/10.1063/1.4950732
14.
E. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “ Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 3556 (1986).
http://dx.doi.org/10.1016/0167-9317(86)90004-3
15.
V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “ BL07 beamline at indus-2: A facility for micro fabrication research,” J. Synchrotron Radiat. 21, 259263 (2014).
http://dx.doi.org/10.1107/S1600577513024934
16.
M. Born and E. Wolf, Principles of Optics, 7th ed. ( Cambridge University Press, 1999).
17.
H. Mimura, H. Yumoto, S. Matsuyama, K. Yamamura, Y. Sano, K. Ueno, K. Endo, Y. Mori, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, and K. Yamauchi, “ Relative angle determinable stitching interferometry for hard x-ray reflective optics,” Rev. Sci. Instrum. 76, 045102 (2005).
http://dx.doi.org/10.1063/1.1868472
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/5/10.1063/1.4960593
Loading
/content/aip/journal/apl/109/5/10.1063/1.4960593
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/5/10.1063/1.4960593
2016-08-04
2016-09-27

Abstract

Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the size of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/5/1.4960593.html;jsessionid=_IM4PhnEQFy7olKwMtwHqdnH.x-aip-live-02?itemId=/content/aip/journal/apl/109/5/10.1063/1.4960593&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/5/10.1063/1.4960593&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/5/10.1063/1.4960593'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,