Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Grassellino, A. Romanenko, D. A. Sergatskov, O. Melnychuk, Y. Trenikhina, A. C. Crawford, A. Rowe, M. Wong, T. Khabiboulline, and F. Barkov, Supercond. Sci. Technol. 26, 102001 (2013).
P. Bishop, M. Checchin, H. Conklin, A. Crawford, E. Daly, K. Davis, M. Drury, R. Eichhorn, J. Fischer, F. Furuta, G. M. Ge, D. Gonnella, A. Grassellino, C. Grimm, T. Gruber, D. Hall, A. Hocker, G. Hoffstaetter, J. Kaufman, G. Kulina, M. Liepe, J. Maniscalco, M. Martinello, O. Melnychuk, T. O'Connel, J. Ozelis, A. D. Palczewski, P. Quigley, C. Reece, A. Romanenko, M. Ross, A. Rowe, D. Sabol, J. Sears, D. A. Sergatskov, W. Soyars, R. Stanek, V. Veshcherevich, R. Wang, and G. Wu, in Proceedings of the 17th International Conference on RF Superconductivity, MOPB033, Whistler, BC, Canada (2015), pp. 159163.
D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
J. Halbritter, Z. Phys. 266, 209 (1974).
A. Gurevich, Phys. Rev. Lett. 113, 087001 (2014).
B. P. Xiao, C. E. Reece, and M. J. Kelley, Physica C 490, 26 (2013).
H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators ( John Wiley and Sons, 1998).
M. Martinello, M. Checchin, A. Grassellino, O. Melnychuk, S. Posen, A. Romanenko, D. A. Sergatskov, and J. F. Zasadzinski, in Proceedings of the 17th International Conference on RF Superconductivity, MOPB015, Whistler, BC, Canada (2015), pp. 115119.
A. Romanenko, A. Grassellino, O. Melnychuk, and D. A. Sergatskov, J. Appl. Phys. 115, 184903 (2014).
A. Romanenko, A. Grassellino, A. C. Crawford, D. A. Sergatskov, and O. Melnychuk, Appl. Phys. Lett. 105, 234103 (2014).
D. Gonnella, R. Eichhorn, F. Furuta, M. Ge, D. Hall, V. Ho, G. Hoffstaetter, M. Liepe, T. O'Connell, S. Posen, P. Quigley, J. Sears, V. Veshcherevich, A. Grassellino, A. Romanenko, and D. A. Sergatskov, J. Appl. Phys. 117, 023908 (2015).
M. Martinello, M. Checchin, A. Grassellino, A. C. Crawford, O. Melnychuk, A. Romanenko, and D. A. Sergatskov, J. Appl. Phys. 118, 044505 (2015).
B. Aune, R. Bandelmann, D. Bloess, B. Bonin, A. Bosotti, M. Champion, C. Crawford, G. Deppe, B. Dwersteg, D. Edwards, H. T. Edwards, M. Ferrario, M. Fouaidy, P.-D. Gall, A. Gamp, A. Gössel, J. Graber, D. Hubert, M. Hüning, M. Juillard, T. Junquera, H. Kaiser, G. Kreps, M. Kuchnir, R. Lange, M. Leenen, M. Liepe, L. Lilje, A. Matheisen, W.-D. Möller, A. Mosnier, H. Padamsee, C. Pagani, M. Pekeler, H.-B. Peters, O. Peters, D. Proch, K. Rehlich, D. Reschke, H. Safa, T. Schilcher, P. Schmüser, J. Sekutowicz, S. Simrock, W. Singer, M. Tigner, D. Trines, K. Twarowski, G. Weichert, J. Weisend, J. Wojtkiewicz, S. Wolff, and K. Zapfe, Phys. Rev. Spec. Top.—Accel. Beams 3, 092001 (2000).
A. Grassellino, A. Romanenko, S. Posen, Y. Trenikhina, O. Melnychuk, D. Sergatskov, M. Merio, M. Checchin, and M. Martinello, in Proceedings of the 17th International Conference on RF Superconductivity, MOBA06, Whistler, BC, Canada (2015), pp. 4854.
S. Posen, M. Checchin, A. C. Crawford, A. Grassellino, M. Martinello, O. S. Melnychuk, A. Romanenko, D. A. Sergatskov, and Y. Trenikhina, J. Appl. Phys 119, 213903 (2016).
J. Halbritter, KFK-Extern 3/70–6, 1970.
E. Morenzoni, F. Kottmann, D. Maden, B. Matthias, M. Meyberg, T. Prokscha, T. Wutzke, and U. Zimmermann, Phys. Rev. Lett. 72, 2793 (1994).
C. Vallet, M. Boloré, B. Bonin, J. P. Charrier, B. Daillant, J. Gratadour, F. Koechlin, and H. Safa, in Proceedings of the 3rd European Particle Accelerator Conference, Berlin, Germany (1992), p. 1295.
D. Gonnella, J. Kaufman, and M. Liepe, J. Appl. Phys 119, 073904 (2016).
J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734 (1966).
M. Rabinowitz, Appl. Phys. Lett. 19, 73 (1971).
A. Gurevich and G. Ciovati, Phys. Rev. B 87, 054502 (2013).
M. Checchin, A. Grassellino, M. Martinello, A. Romanenko, and J. F. Zasadzinski, in Proceedings of the 17th International Conference on RF Superconductivity, MOPB020, Whistler, BC, Canada (2015), pp. 129134.
G. Ciovati and A. Gurevich, in Proceedings of the 13th International Workshop on RF Superconductivity, TUP13, Beijing, China (2007), p. 132.
C. Benvenuti, S. Calatroni, I. E. Campisi, P. Darriulat, M. A. Peck, R. Russo, and A.-M. Valente, Physica C 316, 153 (1999).
T. Kommers and J. Clarke, Phys. Rev. Lett. 38, 1091 (1977).
J. E. Mooij, “ Enhancement of superconductivity,” in Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries ( Springer US, Boston, MA, 1981), pp. 191229.
G. M. Eliashberg, ZhETF Pis. Red. 11, 186 (1970)
G. M. Eliashberg, [JETP Lett. 11, 114 (1970)].
H. Padamsee, RF Superconductivity: Volume II: Science, Technology and Applications ( Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, 2009).
A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013).

Data & Media loading...


Article metrics loading...



Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. This effect is attributed to the lowering of the Mattis-Bardeen surface resistance with increasing accelerating field; however, the microscopic origin of this phenomenon is poorly understood. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper, we conduct a systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobium resonators. Adding these results together, we are able to show which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide insights on the physics behind the change in the field dependence of the Mattis-Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd