Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Nat. Commun. 6, 6529 (2015).
B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A 375, 213 (2004).
B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science 345(6201), 1153 (2014).
Y. Terada, K. Ohkubo, T. Mohri, and T. Suzuki, Mater. Trans., JIM 43(12), 3167 (2002).
R. P. Reed and M. Golda, Cryogenics 34(11), 909 (1994).
M. Caro, L. K. Béland, G. D. Samolyuk, R. E. Stoller, and A. Caro, J. Alloys Compd. 648, 408 (2015).
H. P. Chou, Y. S. Chang, S. K. Chen, and J. W. Yeh, Mater. Sci. Eng. B 163(3), 184 (2009).
K. Jin, B. C. Sales, G. M. Stocks, G. D. Samolyuk, M. Daene, W. J. Weber, Y. Zhang, and H. Bei, Sci. Rep. 6, 20159 (2016).
J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, Mater. Chem. Phys. 103(1), 41 (2007).
F. B. Lewis and N. H. Saunders, J. Phys. C: Solid State Phys. 6(15), 2525 (1973).
R. E. Pawel and E. E. Stansbury, J. Phys. Chem. Solids 26(3), 607 (1965).
Z. Wu, H. Bei, G. M. Pharr, and E. P. George, Acta Mater. 81, 428 (2014).
F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, and E. P. George, Acta Mater. 61(15), 5743 (2013).
R. E. Hummel, Electronic Properties of Materials ( Springer Science & Business Media, New York, 2011), p. 79.
T. Tritt, Thermal Conductivity: Theory, Properties, and Applications ( Kluwer Academic/Plenum, New York, 2004), p. 21.
A. M. Okaz, M. E. Osairy, and N. S. Mahmoud, J. Therm. Anal. Calorim. 35(1), 121 (1989).
C. Y. Ho, M. W. Ackerman, K. Y. Wu, T. N. Havill, R. H. Bogaard, R. A. Matula, S. G. Oh, and H. M. James, J. Phys. Chem. Ref. Data 12(2), 183 (1983).
C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill, J. Phys. Chem. Ref. Data 7(3), 959 (1978).
C. Y. Ho and T. K. Chu, “ Electrical resistivity and thermal conductivity of nine selected AISI stainless steels,” DTIC document, West Lafayette, 1977, CINDAS Report No. 45.
J. H. Mooij, Phys. Status Solidi A 17(2), 521 (1973).
M. F. Ashby, H. Shercliff, and D. Cebon, Materials: Engineering, Science, Processing and Design ( Butterworth-Heinemann, Oxford, 2013), p. 298.
S. Shafeie, S. Guo, Q. Hu, H. Fahlquist, P. Erhart, and A. Palmqvist, J. Appl. Phys. 118(18), 184905 (2015).
S. W. Van Sciver, Helium Cryogenics ( Springer Science & Business Media, New York, 2012), p. 44.
K. D. Maglić, N. Lj. Perović, and A. M. Stanimirović, Int. J. Thermophys. 15(4), 741 (1994).
L. E. Murr, E. Martinez, S. M. Gaytan, D. A. Ramirez, B. I. Machado, P. W. Shindo, J. L. Martinez, F. Medina, and D. Ciscel, Metall. Mater. Trans. A 42(11), 3491 (2011).
T. F. Pearson, Cryogenics 13(7), 389 (1973).
H. R. Higgy and F. H. Hammad, J. Nucl. Mater. 55(2), 177 (1975).
Y. P. Wang, B. S. Li, M. X. Ren, C. Yang, and H. Z. Fu, Mater. Sci. Eng. A 491(1), 154 (2008).
C. Y. Ho, R. W. Powell, and P. E. Liley, J. Phys. Chem. Ref. Data 1(2), 279 (1972).

Data & Media loading...


Article metrics loading...



We investigate how to manipulate the ratio between thermal conductivity (κ) and yield strength (σ) in face-centered cubic solid-solutions by varying the number of principal elements (NPEs) and temperature. The influence of NPEs on κ and its electronic (κ) and lattice (κ) contribution is evaluated using the Wiedemann–Franz law. Positive Δκ/ΔT and the highest κ ratio in high-entropy alloys (HEAs) can be understood by considering severe lattice distortion and compositional complexity. Among the solid-solutions from Ni to quinary alloys, the NiCoFeCrMn HEA exhibits the lowest κ. However, σ increases with increasing NPEs and decreasing temperature. Thus, the NiCoFeCrMn HEA exhibits the highest σ/κ ratio, higher than those of representative cryogenic alloys, which can be distinctively increased with a decrease in temperature. These results would give us a guideline on how to manipulate properties using HEA design concept in order to develop idealized cryogenic materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd