Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
F. Cortes-Salazar, S. Beggan, J. R. van der Meer, and H. H. Girault, Biosens. Bioelectron. 47, 237 (2013).
F. Xie, X. Lin, X. Wu, and Z. Xie, Talanta 74, 836 (2008).
R. Ravisankar, S. Chandrasekaran, A. Chandrasekaran, K. V. Kanagasabapathy, M. V. R. Prasad, and K. K. Satapathy, Appl. Radiat. Isot. 102, 42 (2015).
Q. Cong and Y. Cai, Food Sci. 31, 290 (2010).
Y. K. Rui and J. Hao, Asian J. Chem. 24, 2825 (2012).
R. Tabassum and B. D. Gupta, Sens. Actuators, B 220, 903 (2015).
M. Moradi, Y. Yamini, J. Kakehmam, and K. Ahmadi, J. Iran. Chem. Soc. 12, 831 (2015).
Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Nano Lett. 9, 3318 (2009).
P. Li, D. Zhang, J. Liu, H. Chang, Y. Sun, and N. Yin, ACS Appl. Mater. Interfaces 7, 24396 (2015).
J. Renteria, R. Samnakay, S. V. Rumyantsev, C. Jiang, P. Goli, M. S. Shur, and A. A. Balandin, Appl. Phys. Lett. 104, 153104 (2014).
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
R. Samnakay, C. Jiang, S. L. Rumyantsev, M. S. Shur, and A. A. Balandin, Appl. Phys. Lett. 106, 023115 (2015).
D. Sarkar, W. Liu, W. Xie, A. C. Anselmo, S. Mitragotri, and K. Banerjee, ACS Nano 8, 3992 (2014).
J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M. A. Alam, and S. Kim, Sci. Rep. 4, 7352 (2014).
S. Das, H. Y. Chen, A. V. Penumatch, and J. Appenzeller, Nano Lett. 13, 100 (2013).
B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, and C. Zhou, ACS Nano 8, 5304 (2014).
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
C. M. McGraw, T. Radu, A. Radu, and D. Diamond, Electroanalysis 20, 340 (2008).
V. K. Gupta and S. Agarwal, Talanta 65, 730 (2005).
N. Kaushik, A. Nipane, F. Basheer, S. Dubey, S. Grover, M. M. Deshmukh, and S. Lodha, Appl. Phys. Lett. 105, 113505 (2014).
M. Abe, K. Murata, T. Ataka, and K. Matsumoto, Nanotechnology 19, 045505 (2008).
J. R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Lou, and R. K. Kawakami, Nano Lett. 13, 3106 (2013).
X. Liang, Z. Fu, and S. Y. Chou, Nano Lett. 7, 3840 (2007).
N. Ma and D. Jena, 2D Mater. 2, 015003 (2015).
L. A. Currie, Pure Appl. Chem. 67, 1699 (1995).
M. Baglan and S. Atilgan, Chem. Commun. 49, 5325 (2013).
C. Weng, J. Cang, J. Chang, T. Hsiung, B. Unnikrishnan, Y. Hung, Y. Tseng, Y. Li, Y. Shen, and C. Huang, Anal. Chem. 86, 3167 (2014).
D. P. Webster, M. A. TerAvest, D. F. R. Doud, A. Chakravorty, E. C. Holmes, C. M. Radens, S. Sureka, and J. A. Gralnick, Biosens. Bioelectron. 62, 320 (2014).
N. Gupta, A. K. Singh, S. Bhardwaj, and D. Singhal, Electroanalysis 27, 11661175 (2015).
Y. Wang, P. Wang, Y. Wang, X. He, and K. Wang, Talanta 141, 122 (2015).
S. Zhou, X. Han, H. Fan, Q. Zhang, and Y. Liu, Electrochim. Acta 174, 1160 (2015).
T. Jiang, Z. Guo, J. Liu, and X. Huang, Electrochim. Acta 191, 142 (2016).
P. K. Rastogi, D. K. Yadav, S. Pandey, V. Ganesan, P. K. Sonkar, and R. Gupta, J. Chem. Sci. 128, 349 (2016).
M. Y. Luo, G. Bosman, A. van der Ziel, and L. L. Hench, IEEE Trans. Electron. Devices 35, 1351 (1988).

Data & Media loading...


Article metrics loading...



Molybdenum disulphide (MoS) is one of the most attractive two dimensional materials other than graphene, and the exceptional properties make it a promising candidate for bio/chemical sensing. Nevertheless, intrinsic properties and sensing performances of MoS are easily masked by the presence of the Schottky barrier (SB) at source/drain electrodes, and its impact on MoS sensors remains unclear. Here, we systematically investigated the influence of the SB on MoS sensors, revealing the sensing mechanism of intrinsic MoS. By utilizing a small work function metal, Ti, to reduce the SB, excellent electrical properties of this 2D material were yielded with 2–3 times enhanced sensitivity. We experimentally demonstrated that the sensitivity of MoS is superior to that of graphene. Intrinsic MoS was able to realize rapid detection of arsenite down to 0.1 ppb without the influence of large SB, which is two-fold lower than the World Health Organization (WHO) tolerance level and better than the detection limit of recently reported arsenite sensors. Additionally, accurately discriminating target molecules is a great challenge for sensors based on 2D materials. This work demonstrates MoS sensors encapsulated with ionophore film which only allows certain types of molecules to selectively permeate through it. As a result, multiplex ion detection with superb selectivity was realized. Our results show prominent advantages of intrinsic MoS as a sensing material.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd