Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/9/10.1063/1.4961377
1.
J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, Appl. Phys. Express 7(11), 111001 (2014).
http://dx.doi.org/10.7567/APEX.7.111001
2.
K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, M. Ikeda, Y. Enya, and S. Takagi, Appl. Phys. Express 5(8), 082103 (2012).
http://dx.doi.org/10.1143/APEX.5.082103
3.
D. S. Sizov, R. Bhat, A. Zakharian, J. Napierala, K. Song, D. Allen, and C.-E. Zah, Appl. Phys. Express 3(12), 122101 (2010).
http://dx.doi.org/10.1143/APEX.3.122101
4.
J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, and R. Craig, Appl. Phys. Express 3(11), 112101 (2010).
http://dx.doi.org/10.1143/APEX.3.112101
5.
A. Tyagi, R. M. Farrell, K. M. Kelchner, C.-Y. Huang, P. S. Hsu, D. A. Haeger, M. T. Hardy, C. Holder, K. Fujito, and D. A. Cohen, Appl. Phys. Express 3(1), 011002 (2009).
http://dx.doi.org/10.1143/APEX.3.011002
6.
T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S.-I. Nagahama, and T. Mukai, Appl. Phys. Express 2(6), 062201 (2009).
http://dx.doi.org/10.1143/APEX.2.062201
7.
Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, and K. Katayama, Appl. Phys. Express 2(8), 082101 (2009).
http://dx.doi.org/10.1143/APEX.2.082101
8.
A. Avramescu, T. Lermer, J. Müller, S. Tautz, D. Queren, S. Lutgen, and U. Strauß, Appl. Phys. Lett. 95(7), 071103 (2009).
http://dx.doi.org/10.1063/1.3206739
9.
A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, and F. Zhang, Phys. Status Solidi C 13(5–6), 245247 (2016).
http://dx.doi.org/10.1002/pssc.201510186
10.
M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52(11), 8132 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.8132
11.
T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. Asif Khan, Solid-State Electron. 47(1), 111 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00256-3
12.
T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, Appl. Phys. Lett. 65(5), 593 (1994).
http://dx.doi.org/10.1063/1.112309
13.
J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, Appl. Phys. Lett. 93(2), 021102 (2008).
http://dx.doi.org/10.1063/1.2957667
14.
A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, Appl. Phys. Lett. 92(5), 053502 (2008).
http://dx.doi.org/10.1063/1.2839305
15.
E. Jung, G. Hwang, J. Chung, O. Kwon, J. Han, Y.-T. Moon, and T.-Y. Seong, Appl. Phys. Lett. 106(4), 041114 (2015).
http://dx.doi.org/10.1063/1.4907177
16.
D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, and C. Sone, Appl. Phys. Lett. 99(4), 041112 (2011).
http://dx.doi.org/10.1063/1.3618673
17.
D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. Fred Schubert, H. Shim, M.-H. Kim, and C. Sone, Appl. Phys. Lett. 99(25), 251115 (2011).
http://dx.doi.org/10.1063/1.3671395
18.
J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, Appl. Phys. Lett. 97(20), 201112 (2010).
http://dx.doi.org/10.1063/1.3520139
19.
K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 94(6), 061116 (2009).
http://dx.doi.org/10.1063/1.3081059
20.
M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91(18), 183507 (2007).
http://dx.doi.org/10.1063/1.2800290
21.
L. Le, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, J. Yang, X. Li, X. He, J. Liu, S. Zhang, and H. Yang, J. Vac. Sci. Technol., B 33(1), 011209 (2015).
http://dx.doi.org/10.1116/1.4905430
22.
L. Le, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Yang, X. He, X. Li, J. Liu, and J. Zhu, Opt. Express 22(10), 11392 (2014).
http://dx.doi.org/10.1364/OE.22.011392
23.
W. Yang, D. Li, N. Liu, Z. Chen, L. Wang, L. Liu, L. Li, C. Wan, W. Chen, X. Hu, and W. Du, Appl. Phys. Lett. 100(3), 031105 (2012).
http://dx.doi.org/10.1063/1.3678197
24.
D. Zhang, Z. C. Liu, and X. D. Hu, Semicond. Sci. Technol. 24(4), 045003 (2009).
http://dx.doi.org/10.1088/0268-1242/24/4/045003
25.
S.-N. Lee, S. Cho, H. Ryu, J. Son, H. Paek, T. Sakong, T. Jang, K. Choi, K. Ha, and M. Yang, Appl. Phys. Lett. 88(11), 111101 (2006).
http://dx.doi.org/10.1063/1.2185251
26.
Y.-K. Kuo and Y.-A. Chang, IEEE J. Quantum Electron. 40(5), 437 (2004).
http://dx.doi.org/10.1109/JQE.2004.826437
27.
D. S. Sizov, R. Bhat, A. Zakharian, K. Song, D. E. Allen, S. Coleman, and C.-E. Zah, IEEE J. Sel. Top. Quantum Electron. 17(5), 1390 (2011).
http://dx.doi.org/10.1109/JSTQE.2011.2116770
28.
T. Hager, M. Binder, G. Brüderl, C. Eichler, A. Avramescu, T. Wurm, A. Gomez-Iglesias, B. Stojetz, S. Tautz, and B. Galler, Appl. Phys. Lett. 102(23), 231102 (2013).
http://dx.doi.org/10.1063/1.4809833
29.
T. Hager, G. Brüderl, T. Lermer, S. Tautz, A. Gomez-Iglesias, J. Müller, A. Avramescu, C. Eichler, S. Gerhard, and U. Strauss, Appl. Phys. Lett. 101(17), 171109 (2012).
http://dx.doi.org/10.1063/1.4764067
30.
S. Zhang, E. Xie, T. Yan, W. Yang, J. Herrnsdof, Z. Gong, I. M. Watson, E. Gu, M. D. Dawson, and X. Hu, J. Appl. Phys. 118(12), 125709 (2015).
http://dx.doi.org/10.1063/1.4931575
31.
M. A. Alam, M. S. Hybertsen, R. K. Smith, and G. A. Baraff, IEEE Trans. Electron Devices 47(10), 1917 (2000).
http://dx.doi.org/10.1109/16.870572
32.
C. Xia, W. Hu, C. Wang, Z. Li, X. Chen, W. Lu, Z. S. Li, and Z. Li, Opt. Quantum Electron. 38(12–14), 1077 (2006).
http://dx.doi.org/10.1007/s11082-006-9029-5
33.
E. M. Azoff, IEEE Trans. Electron Devices 36(4), 609 (1989).
http://dx.doi.org/10.1109/16.22464
34.
S. L. Chuang, J. O'Gorman, and A. Levi, IEEE J. Quantum Electron. 29(6), 1631 (1993).
http://dx.doi.org/10.1109/3.234415
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/9/10.1063/1.4961377
Loading
/content/aip/journal/apl/109/9/10.1063/1.4961377
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/9/10.1063/1.4961377
2016-09-02
2016-10-01

Abstract

Hole transport in c-plane InGaN-based green laser diodes (LDs) has been investigated by both simulations and experiments. It is found that holes can overflow from the green double quantum wells (DQWs) at high current density, which reduces carrier injection efficiency of c-plane InGaN-based green LDs. A heavily silicon-doped layer right below the green DQWs can effectively suppress hole overflow from the green DQWs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/9/1.4961377.html;jsessionid=Q72b8HO-DTHRErQWXDSRGEGI.x-aip-live-03?itemId=/content/aip/journal/apl/109/9/10.1063/1.4961377&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/9/10.1063/1.4961377&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/9/10.1063/1.4961377'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,