Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/9/10.1063/1.4961941
1.
Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, Appl. Phys. Lett. 93, 053504 (2008).
http://dx.doi.org/10.1063/1.2969282
2.
G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
3.
S. Canulescu, K. Rechendorff, C. N. Borca, N. C. Jones, K. Bordo, J. Schou, L. Pleth Nielsen, S. V. Hoffmann, and R. Ambat, Appl. Phys. Lett. 104, 121910 (2014).
http://dx.doi.org/10.1063/1.4866901
4.
M. Santamaria, F. Di Franco, F. Di Quarto, P. Skeldon, and G. E. Thompson, J. Phys. Chem. C 117, 4201 (2013).
http://dx.doi.org/10.1021/jp312008m
5.
M. Santamaria, F. Di Quarto, and H. Habazaki, Corros. Sci. 50, 2012 (2008).
http://dx.doi.org/10.1016/j.corsci.2008.04.014
6.
R. J. Jung, J. C. Lee, Y. W. So, T. W. Noh, S. J. Oh, J. C. Lee, and H. J. Shin, Appl. Phys. Lett. 83, 5226 (2003).
http://dx.doi.org/10.1063/1.1635656
7.
V. C. Gudla, S. Canulescu, R. Shabadi, K. Rechendorff, K. Dirscherl, and R. Ambat, Appl. Surf. Sci. 317, 1113 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.09.037
8.
C. Piamonteze, U. Flechsig, S. Rusponi, J. Dreiser, J. Heidler, M. Schmidt, R. Wetter, M. Calvi, T. Schmidt, H. Pruchova, J. Krempasky, C. Quitmann, H. Brune, and F. Nolting, J. Synchrotron. Radiat. 19, 661 (2012).
http://dx.doi.org/10.1107/S0909049512027847
9.
J. Krempasky, U. Flechsig, T. Korhonen, D. Zimoch, Ch. Quitmann, and F. Nolting, AIP Conf. Proc. 1234, 705 (2010).
http://dx.doi.org/10.1063/1.3463307
10.
F. M. F. Degroot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Phys. Rev. B 40, 5715 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5715
11.
M. Haverty, A. Kawamoto, K. Cho, and R. Dutton, Appl. Phys. Lett. 80, 2669 (2002).
http://dx.doi.org/10.1063/1.1467979
12.
T. P. Woodman, Thin Solid Films 9, 195 (1972).
http://dx.doi.org/10.1016/0040-6090(72)90250-7
13.
G. K. Mor, O. K. Varghese, M. Paulose, and C. A. Grimes, Adv. Funct. Mater. 15, 1291 (2005).
http://dx.doi.org/10.1002/adfm.200500096
14.
R. H. French, J. Am. Ceram. Soc. 73, 477 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06541.x
15.
E. A. Davis and N. F. Mott, Philos. Mag. 22, 903 (1970).
http://dx.doi.org/10.1080/14786437008221061
16.
D. Tahir, H. L. Kwon, H. C. Shin, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Phys. D: Appl. Phys. 43, 255301 (2010).
http://dx.doi.org/10.1088/0022-3727/43/25/255301
17.
E. O. Filatova and A. S. Konashuk, J. Phys. Chem. C 119, 20755 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b06843
18.
X. Wang, K. Saito, T. Tanaka, M. Nishio, T. Nagaoka, M. Arita, and Q. Guo, Appl. Phys. Lett. 107, 022111 (2015).
http://dx.doi.org/10.1063/1.4926980
19.
F. Trivinho-Strixino, F. E. G. Guimaraes, and E. C. Pereira, Chem. Phys. Lett. 461, 82 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.06.072
20.
D. B. Khadka and J. H. Kim, J. Phys. Chem. C 119, 1706 (2015).
http://dx.doi.org/10.1021/jp510877g
21.
S.-H. Wei and A. Zunger, Phys. Rev. Lett. 76, 664 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.664
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/9/10.1063/1.4961941
Loading
/content/aip/journal/apl/109/9/10.1063/1.4961941
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/9/10.1063/1.4961941
2016-08-29
2016-09-27

Abstract

The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al O to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr -electron states localized below the conduction band minimum of anodized Al O.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/9/1.4961941.html;jsessionid=zXcLVoenJ4IU5ApPAV46c5Jq.x-aip-live-06?itemId=/content/aip/journal/apl/109/9/10.1063/1.4961941&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/9/10.1063/1.4961941&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/9/10.1063/1.4961941'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,