Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, Appl. Phys. Lett. 55, 1208 (1989).
J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, in 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FL (1990), p. 24.
M. J. DiNezza, X.-H. Zhao, S. Liu, A. P. Kirk, and Y.-H. Zhang, Appl. Phys. Lett. 103, 193901 (2013).
S. Liu, X.-H. Zhao, C. Campbell, M. J. DiNezza, Y. Zhao, and Y.-H. Zhang, J. Vac. Sci. Technol. B 33, 011207 (2015).
C. H. Swartz, M. Edirisooriya, E. G. Leblanc, O. C. Noriega, P. A. R. D. Jayathilaka, O. S. Ogedengbe, B. L. Hancock, M. Holtz, T. H. Myers, and K. N. Zaunbrecher, Appl. Phys. Lett. 105, 222107 (2014).
X. H. Zhao, M. J. Dinezza, S. Liu, P. A. R. D. Jayathilaka, O. C. Noriega, T. H. Myers, and Y. H. Zhang, in 40th IEEE Photovoltaic Specialists Conference, Denver, CO (2014 ), pp. 32723275.
A. Million, J. Vac. Sci. Technol., A 6, 2813 (1988).
R. J. Koestner and H. F. Schaake, J. Vac. Sci. Technol., A 6, 2834 (1988).
A. G. Cullis, N. G. Chew, J. L. Hutchison, S. J. C. Irvine, and J. Giess, in Microscopy of Semiconductor Confernce, Oxford (1985), pp. 2934.
A. W. Vere, S. Cole, and D. J. Williams, J. Electron. Mater. 12, 551 (1983).
W. J. Yin, J. H. Yang, K. Zaunbrecher, T. Gessert, T. Barnes, Y. Yan, and S. H. Wei, Appl. Phys. Lett. 107, 141607 (2015).
J. Chai, K. K. Lee, K. Doyle, J. H. Dinan, and T. H. Myers, J. Electron. Mater. 41, 2738 (2012).
C. Fontaine, J. P. Gailliard, S. Magli, A. Million, and J. Piaguet, Appl. Phys. Lett. 50, 903 (1987).
O. C. Noriega, A. Savage, T. H. Myers, P. J. Smith, R. N. Jacobs, C. M. Lennon, P. S. Wijewarnasuriya, and Y. Chen, in II–VI Workshop Chicago (2013).
E. G. Leblanc, P. A. R. D. Jayathilaka, M. Edirisooriya, O. S. Ogedengbe, C. Swartz, O. C. Noriega, and T. H. Myers, in SunShot Workshop Anaheim, CA (2014).
D. W. Piston, Biol. Bull. 195, 1 (1998).
W. S. Rasband, ImageJ ( U. S. National Institutes of Health, Bethesda, MD, 1997–2015).
J. Chai, O. C. Noriega, A. Dedigama, J. J. Kim, A. A. Savage, K. Doyle, C. Smith, N. Chau, J. Pena, J. H. Dinan, D. J. Smith, and T. H. Myers, J. Electron. Mater. 42, 3090 (2013).
C. Li, J. Poplawsky, Y. Wu, A. R. Lupini, A. Mouti, D. N. Leonard, N. Paudel, K. Jones, W. Yin, M. Al-Jassim, Y. Yan, and S. J. Pennycook, Ultramicroscopy 134, 113 (2013).
T. H. Gfroerer, Y. Zhang, and M. W. Wanlass, Appl. Phys. Lett. 102, 012114 (2013).
T. H. Gfroerer, C. M. Crowley, C. M. Read, and M. W. Wanlass, J. Appl. Phys. 111, 093712 (2012).
F. Chen, Y. Zhang, T. H. Gfroerer, A. N. Finger, and M. W. Wanlass, Sci. Rep. 5, 10542 (2015).
C. Kraft, H. Metzner, M. Hädrich, U. Reislöhner, P. Schley, G. Gobsch, and R. Goldhahn, J. Appl. Phys. 108, 124503 (2010).
D. S. Albin, D. Kuciauskas, J. Ma, W. K. Metzger, J. M. Burst, H. R. Moutinho, and P. C. Dippo, Appl. Phys. Lett. 104, 092109 (2014).
D. P. P. Halliday, M. D. G. Potter, J. T. Mullins, and A. W. Brinkman, J. Cryst. Growth 220, 30 (2000).
K. Zanio, in Semiconductors and Semimetals, edited by R. K. Willarson and A. C. Beer ( Academic, New York, 1972), Vol. 13.
P. J. Dean, G. M. Williams, and G. Blackmore, J. Phys. D: Appl. Phys. 17, 2291 (1984).
S. Hildebrandt, H. Uniewski, J. Schreiber, and H. S. Leipner, J. Phys. III France 7, 1505 (1997).
E. Molva, K. Saminadayar, J. L. Pautrat, and E. Ligeon, Solid State Commun. 48, 955 (1983).
K. Huang and A. Rhys, Proc. R. Soc. A 204, 406 (1950).
D. Kuciauskas, P. Dippo, A. Kanevce, Z. Zhao, L. Cheng, A. Los, M. Gloeckler, and W. K. Metzger, Appl. Phys. Lett. 107, 234906 (2015).
W. Stadler, D. Hofmann, H. Alt, T. Muschik, B. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. Benz, Phys. Rev. B 51, 10619 (1995).
R. K. Ahrenkiel, in Semiconductors and Semimetals, edited by R. K. Ahrenkiel and M. S. Lundstrom ( Elsevier Science Publishing Co. Inc., 1993), Vol. 39, pp. 40146.
X.-H. Zhao, S. Liu, Y. Zhao, C. M. Campbell, M. B. Lassise, Y.-S. Kuo, and Y.-H. Zhang, IEEE J. Photovoltaics 6, 552 (2016).
R. Cohen, V. Lyahovitskaya, E. Poles, A. Liu, and Y. Rosenwaks, Appl. Phys. Lett. 73, 1400 (1998).
R. K. Ahrenkiel, B. M. Keyes, D. L. Levi, K. Emery, T. L. Chu, and S. S. Chu, Appl. Phys. Lett. 64, 2879 (1994).
X.-H. Zhao, M. J. DiNezza, S. Liu, S. Lin, Y. Zhao, and Y.-H. Zhang, J. Vac. Sci. Technol. B 32, 040601 (2014).
A. E. Rakhshani, J. Appl. Phys. 81, 7988 (1997).
A. P. Kirk, M. J. DiNezza, S. Liu, X.-H. Zhao, and Y.-H. Zhang, in 39th IEEE Photovoltaic Specialists Conference, Tampa, FL (2013), p. 2515.
J. M. Burst, J. N. Duenow, D. S. Albin, E. Colegrove, M. O. Reese, J. A. Aguiar, C.-S. Jiang, M. K. Patel, M. M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K. G. Lynn, and W. K. Metzger, Nat. Energy 1, 16015 (2016).
P. Asbeck, J. Appl. Phys. 48, 820 (1977).
X.-H. Zhao, M. J. DiNezza, S. Liu, S. Lin, Y. Zhao, and Y.-H. Zhang, Appl. Phys. Lett. 105, 252101 (2014).

Data & Media loading...


Article metrics loading...



Heterostructures with CdTe and CdTe Se (x ∼ 0.01) absorbers between two wider-band-gap CdMgTe barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 m, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 s with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 s.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd