Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/9/10.1063/1.4961989
1.
J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, Appl. Phys. Lett. 55, 1208 (1989).
http://dx.doi.org/10.1063/1.101656
2.
J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, in 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FL (1990), p. 24.
3.
M. J. DiNezza, X.-H. Zhao, S. Liu, A. P. Kirk, and Y.-H. Zhang, Appl. Phys. Lett. 103, 193901 (2013).
http://dx.doi.org/10.1063/1.4828984
4.
S. Liu, X.-H. Zhao, C. Campbell, M. J. DiNezza, Y. Zhao, and Y.-H. Zhang, J. Vac. Sci. Technol. B 33, 011207 (2015).
http://dx.doi.org/10.1116/1.4905289
5.
C. H. Swartz, M. Edirisooriya, E. G. Leblanc, O. C. Noriega, P. A. R. D. Jayathilaka, O. S. Ogedengbe, B. L. Hancock, M. Holtz, T. H. Myers, and K. N. Zaunbrecher, Appl. Phys. Lett. 105, 222107 (2014).
http://dx.doi.org/10.1063/1.4902926
6.
X. H. Zhao, M. J. Dinezza, S. Liu, P. A. R. D. Jayathilaka, O. C. Noriega, T. H. Myers, and Y. H. Zhang, in 40th IEEE Photovoltaic Specialists Conference, Denver, CO (2014 ), pp. 32723275.
7.
A. Million, J. Vac. Sci. Technol., A 6, 2813 (1988).
http://dx.doi.org/10.1116/1.575607
8.
R. J. Koestner and H. F. Schaake, J. Vac. Sci. Technol., A 6, 2834 (1988).
http://dx.doi.org/10.1116/1.575611
9.
A. G. Cullis, N. G. Chew, J. L. Hutchison, S. J. C. Irvine, and J. Giess, in Microscopy of Semiconductor Confernce, Oxford (1985), pp. 2934.
10.
A. W. Vere, S. Cole, and D. J. Williams, J. Electron. Mater. 12, 551 (1983).
http://dx.doi.org/10.1007/BF02650863
11.
W. J. Yin, J. H. Yang, K. Zaunbrecher, T. Gessert, T. Barnes, Y. Yan, and S. H. Wei, Appl. Phys. Lett. 107, 141607 (2015).
http://dx.doi.org/10.1063/1.4932374
12.
J. Chai, K. K. Lee, K. Doyle, J. H. Dinan, and T. H. Myers, J. Electron. Mater. 41, 2738 (2012).
http://dx.doi.org/10.1007/s11664-012-2054-1
13.
C. Fontaine, J. P. Gailliard, S. Magli, A. Million, and J. Piaguet, Appl. Phys. Lett. 50, 903 (1987).
http://dx.doi.org/10.1063/1.98261
14.
O. C. Noriega, A. Savage, T. H. Myers, P. J. Smith, R. N. Jacobs, C. M. Lennon, P. S. Wijewarnasuriya, and Y. Chen, in II–VI Workshop Chicago (2013).
15.
E. G. Leblanc, P. A. R. D. Jayathilaka, M. Edirisooriya, O. S. Ogedengbe, C. Swartz, O. C. Noriega, and T. H. Myers, in SunShot Workshop Anaheim, CA (2014).
16.
D. W. Piston, Biol. Bull. 195, 1 (1998).
http://dx.doi.org/10.2307/1542768
17.
W. S. Rasband, ImageJ ( U. S. National Institutes of Health, Bethesda, MD, 1997–2015).
18.
J. Chai, O. C. Noriega, A. Dedigama, J. J. Kim, A. A. Savage, K. Doyle, C. Smith, N. Chau, J. Pena, J. H. Dinan, D. J. Smith, and T. H. Myers, J. Electron. Mater. 42, 3090 (2013).
http://dx.doi.org/10.1007/s11664-013-2650-8
19.
C. Li, J. Poplawsky, Y. Wu, A. R. Lupini, A. Mouti, D. N. Leonard, N. Paudel, K. Jones, W. Yin, M. Al-Jassim, Y. Yan, and S. J. Pennycook, Ultramicroscopy 134, 113 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.06.010
20.
T. H. Gfroerer, Y. Zhang, and M. W. Wanlass, Appl. Phys. Lett. 102, 012114 (2013).
http://dx.doi.org/10.1063/1.4775369
21.
T. H. Gfroerer, C. M. Crowley, C. M. Read, and M. W. Wanlass, J. Appl. Phys. 111, 093712 (2012).
http://dx.doi.org/10.1063/1.4709434
22.
F. Chen, Y. Zhang, T. H. Gfroerer, A. N. Finger, and M. W. Wanlass, Sci. Rep. 5, 10542 (2015).
http://dx.doi.org/10.1038/srep10542
23.
C. Kraft, H. Metzner, M. Hädrich, U. Reislöhner, P. Schley, G. Gobsch, and R. Goldhahn, J. Appl. Phys. 108, 124503 (2010).
http://dx.doi.org/10.1063/1.3517436
24.
D. S. Albin, D. Kuciauskas, J. Ma, W. K. Metzger, J. M. Burst, H. R. Moutinho, and P. C. Dippo, Appl. Phys. Lett. 104, 092109 (2014).
http://dx.doi.org/10.1063/1.4867533
25.
D. P. P. Halliday, M. D. G. Potter, J. T. Mullins, and A. W. Brinkman, J. Cryst. Growth 220, 30 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00755-7
26.
K. Zanio, in Semiconductors and Semimetals, edited by R. K. Willarson and A. C. Beer ( Academic, New York, 1972), Vol. 13.
27.
P. J. Dean, G. M. Williams, and G. Blackmore, J. Phys. D: Appl. Phys. 17, 2291 (1984).
http://dx.doi.org/10.1088/0022-3727/17/11/016
28.
S. Hildebrandt, H. Uniewski, J. Schreiber, and H. S. Leipner, J. Phys. III France 7, 1505 (1997).
http://dx.doi.org/10.1051/jp3:1997203
29.
E. Molva, K. Saminadayar, J. L. Pautrat, and E. Ligeon, Solid State Commun. 48, 955 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90539-2
30.
K. Huang and A. Rhys, Proc. R. Soc. A 204, 406 (1950).
http://dx.doi.org/10.1098/rspa.1950.0184
31.
D. Kuciauskas, P. Dippo, A. Kanevce, Z. Zhao, L. Cheng, A. Los, M. Gloeckler, and W. K. Metzger, Appl. Phys. Lett. 107, 234906 (2015).
http://dx.doi.org/10.1063/1.4938127
32.
W. Stadler, D. Hofmann, H. Alt, T. Muschik, B. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. Benz, Phys. Rev. B 51, 10619 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.10619
33.
R. K. Ahrenkiel, in Semiconductors and Semimetals, edited by R. K. Ahrenkiel and M. S. Lundstrom ( Elsevier Science Publishing Co. Inc., 1993), Vol. 39, pp. 40146.
34.
X.-H. Zhao, S. Liu, Y. Zhao, C. M. Campbell, M. B. Lassise, Y.-S. Kuo, and Y.-H. Zhang, IEEE J. Photovoltaics 6, 552 (2016).
http://dx.doi.org/10.1109/JPHOTOV.2016.2514742
35.
R. Cohen, V. Lyahovitskaya, E. Poles, A. Liu, and Y. Rosenwaks, Appl. Phys. Lett. 73, 1400 (1998).
http://dx.doi.org/10.1063/1.122169
36.
R. K. Ahrenkiel, B. M. Keyes, D. L. Levi, K. Emery, T. L. Chu, and S. S. Chu, Appl. Phys. Lett. 64, 2879 (1994).
http://dx.doi.org/10.1063/1.111402
37.
X.-H. Zhao, M. J. DiNezza, S. Liu, S. Lin, Y. Zhao, and Y.-H. Zhang, J. Vac. Sci. Technol. B 32, 040601 (2014).
http://dx.doi.org/10.1116/1.4878317
38.
A. E. Rakhshani, J. Appl. Phys. 81, 7988 (1997).
http://dx.doi.org/10.1063/1.365402
39.
A. P. Kirk, M. J. DiNezza, S. Liu, X.-H. Zhao, and Y.-H. Zhang, in 39th IEEE Photovoltaic Specialists Conference, Tampa, FL (2013), p. 2515.
40.
J. M. Burst, J. N. Duenow, D. S. Albin, E. Colegrove, M. O. Reese, J. A. Aguiar, C.-S. Jiang, M. K. Patel, M. M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K. G. Lynn, and W. K. Metzger, Nat. Energy 1, 16015 (2016).
http://dx.doi.org/10.1038/nenergy.2016.15
41.
P. Asbeck, J. Appl. Phys. 48, 820 (1977).
http://dx.doi.org/10.1063/1.323633
42.
X.-H. Zhao, M. J. DiNezza, S. Liu, S. Lin, Y. Zhao, and Y.-H. Zhang, Appl. Phys. Lett. 105, 252101 (2014).
http://dx.doi.org/10.1063/1.4904993
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/9/10.1063/1.4961989
Loading
/content/aip/journal/apl/109/9/10.1063/1.4961989
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/9/10.1063/1.4961989
2016-08-30
2016-09-26

Abstract

Heterostructures with CdTe and CdTe Se (x ∼ 0.01) absorbers between two wider-band-gap CdMgTe barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 m, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 s with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 s.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/9/1.4961989.html;jsessionid=TcxKTCVBoejNJMSlI3bkwKJD.x-aip-live-06?itemId=/content/aip/journal/apl/109/9/10.1063/1.4961989&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/9/10.1063/1.4961989&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/9/10.1063/1.4961989'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,