Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/9/10.1063/1.4962046
1.
U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “ A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
2.
Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, “ Room temperature p-n ZnO blue-violet light-emitting diodes,” Appl. Phys. Lett. 90, 042113 (2007).
http://dx.doi.org/10.1063/1.2435699
3.
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “ Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897 (2001).
http://dx.doi.org/10.1126/science.1060367
4.
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “ Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455 (2005).
http://dx.doi.org/10.1038/nmat1387
5.
J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, “ p-Type ZnO materials: Theory, growth, properties and devices,” Prog. Mater. Sci. 58, 874 (2013).
http://dx.doi.org/10.1016/j.pmatsci.2013.03.002
6.
S. B. Zhang, S.-H. Wei, and A. Zunger, “ Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63, 075205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075205
7.
D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, “ Hydrogen: A relevant shallow donor in zinc oxide,” Phys. Rev. Lett. 88, 045504 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.045504
8.
C. H. Park, S. B. Zhang, and S.-H. Wei, “ Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66, 073202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073202
9.
A. Janotti and C. G. Van de Walle, “ Native point defects in ZnO,” Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
10.
J. G. Lu, P. Chang, and Z. Fan, “ Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications,” Mater. Sci. Eng., R 52, 4991 (2006).
http://dx.doi.org/10.1016/j.mser.2006.04.002
11.
J. Cui, “ Zinc oxide nanowires,” Mater. Charact. 64, 4352 (2012).
http://dx.doi.org/10.1016/j.matchar.2011.11.017
12.
P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, “ High-performance ZnO nanowire field effect transistors,” Appl. Phys. Lett. 89, 133113 (2006).
http://dx.doi.org/10.1063/1.2357013
13.
G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, and S. T. Lee, “ p-Type ZnO nanowire arrays,” Nano Lett. 8, 2591 (2008).
http://dx.doi.org/10.1021/nl073022t
14.
G. Wang, S. Chu, N. Zhan, Y. Lin, L. Chernyak, and J. Liu, “ ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection,” Appl. Phys. Lett. 98, 041107 (2011).
http://dx.doi.org/10.1063/1.3551628
15.
O. Hultin, G. Otnes, M. T. Borgström, M. Björk, L. Samuelson, and K. Storm, “ Comparing Hall effect and field effect measurements on the same single nanowire,” Nano Lett. 16, 205 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b03496
16.
K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, “ Spatially resolved Hall effect measurement in a single semiconductor nanowire,” Nat. Nanotechnol. 7, 718 (2012).
http://dx.doi.org/10.1038/nnano.2012.190
17.
C. C. Williams, “ Two-dimensional dopant profiling by scanning capacitance microscopy,” Annu. Rev. Mater. Sci. 29, 471 (1999).
http://dx.doi.org/10.1146/annurev.matsci.29.1.471
18.
P. Eyben, M. Xu, N. Duhayon, T. Clarysse, S. Callewaert, and W. Vandervorst, “ Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling,” J. Vac. Sci. Technol., B 20, 471 (2002).
http://dx.doi.org/10.1116/1.1424280
19.
E. Latu-Romain, P. Gilet, N. Chevalier, D. Mariolle, F. Bertin, G. Feuillet, and A. Chelnokov, “ Surface-induced p-type conductivity in ZnO nanopillars investigated by scanning probe microscopy,” J. Appl. Phys. 107, 124307 (2010).
http://dx.doi.org/10.1063/1.3436596
20.
L. Wang, J. Laurent, J. M. Chauveau, V. Sallet, F. Jomard, and G. Brémond, “ Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy,” Appl. Phys. Lett. 107, 192101 (2015).
http://dx.doi.org/10.1063/1.4935349
21.
L. Wang, J. M. Chauveau, R. Brenier, V. Sallet, F. Jomard, C. Sartel, and G. Brémond, “ Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy,” Appl. Phys. Lett. 108, 132103 (2016).
http://dx.doi.org/10.1063/1.4945100
22.
N. Hanèche, A. Lusson, C. Sartel, A. Marzouki, V. Sallet, M. Oueslati, F. Jomard, and P. Galtier, “ Optical characterization of nitrogen- and antimony-doped ZnO thin layers grown by MOVPE,” Phys. Status Solidi B 247, 1671 (2010).
http://dx.doi.org/10.1002/pssb.200983679
23.
J. K. Liang, H. L. Su, P. Y. Chuang, C. L. Kuo, S. Y. Huang, T. S. Chan, Y. C. Wu, and J. C. A. Huang, “ Origin of p-type conductivity of Sb-doped ZnO nanorods and the local structure around Sb ions,” Appl. Phys. Lett. 106, 212101 (2015).
http://dx.doi.org/10.1063/1.4921761
24.
H. Liang, Y. Chen, X. Xia, Q. Feng, Y. Liu, R. Shen, Y. Luo, and G. Du, “ Influence of Sb valency on the conductivity type of Sb-doped ZnO,” Thin Solid Films 589, 199 (2015).
http://dx.doi.org/10.1016/j.tsf.2015.05.004
25.
Z. L. Wang and J. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
26.
J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Löffler, M. Schatzmayr, and H. Enichlmair, “ Mechanism of bias-dependent contrast in scanning-capacitance-microscopy images,” Appl. Phys. Lett. 79, 3182 (2001).
http://dx.doi.org/10.1063/1.1415044
27.
R. A. Oliver, “ Advances in AFM for the electrical characterization of semiconductors,” Rep. Prog. Phys. 71, 076501 (2008).
http://dx.doi.org/10.1088/0034-4885/71/7/076501
28.
H. E. Ruda and A. Shik, “ Theoretical analysis of scanning capacitance microscopy,” Phys. Rev. B 67, 235309 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.235309
29.
A. D. L. Bugallo, F. Donatini, C. Sartel, V. Sallet, and J. Pernot, “ Metallic core conduction in unintentionally doped ZnO nanowire,” Appl. Phys. Express 8, 025001 (2015).
http://dx.doi.org/10.7567/APEX.8.025001
30.
H. Y. Liu, N. Izyumskaya, V. Avrutin, U. Özgür, A. B. Yankovich, A. V. Kvit, P. M. Voyles, and H. Morkoç, “ Donor behavior of Sb in ZnO,” J. Appl. Phys. 112, 033706 (2012).
http://dx.doi.org/10.1063/1.4742984
31.
S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “ Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92, 155504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.155504
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/9/10.1063/1.4962046
Loading
/content/aip/journal/apl/109/9/10.1063/1.4962046
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/9/10.1063/1.4962046
2016-08-29
2016-09-25

Abstract

ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effect as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/9/1.4962046.html;jsessionid=SvsEAyI5ybvqUt4eHWJZcuwM.x-aip-live-02?itemId=/content/aip/journal/apl/109/9/10.1063/1.4962046&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/9/10.1063/1.4962046&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/9/10.1063/1.4962046'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,