Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “ A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 041301 (2005).
Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, “ Room temperature p-n ZnO blue-violet light-emitting diodes,” Appl. Phys. Lett. 90, 042113 (2007).
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “ Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897 (2001).
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “ Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455 (2005).
J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, “ p-Type ZnO materials: Theory, growth, properties and devices,” Prog. Mater. Sci. 58, 874 (2013).
S. B. Zhang, S.-H. Wei, and A. Zunger, “ Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63, 075205 (2001).
D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, “ Hydrogen: A relevant shallow donor in zinc oxide,” Phys. Rev. Lett. 88, 045504 (2002).
C. H. Park, S. B. Zhang, and S.-H. Wei, “ Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66, 073202 (2002).
A. Janotti and C. G. Van de Walle, “ Native point defects in ZnO,” Phys. Rev. B 76, 165202 (2007).
J. G. Lu, P. Chang, and Z. Fan, “ Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications,” Mater. Sci. Eng., R 52, 4991 (2006).
J. Cui, “ Zinc oxide nanowires,” Mater. Charact. 64, 4352 (2012).
P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, “ High-performance ZnO nanowire field effect transistors,” Appl. Phys. Lett. 89, 133113 (2006).
G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, and S. T. Lee, “ p-Type ZnO nanowire arrays,” Nano Lett. 8, 2591 (2008).
G. Wang, S. Chu, N. Zhan, Y. Lin, L. Chernyak, and J. Liu, “ ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection,” Appl. Phys. Lett. 98, 041107 (2011).
O. Hultin, G. Otnes, M. T. Borgström, M. Björk, L. Samuelson, and K. Storm, “ Comparing Hall effect and field effect measurements on the same single nanowire,” Nano Lett. 16, 205 (2016).
K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, “ Spatially resolved Hall effect measurement in a single semiconductor nanowire,” Nat. Nanotechnol. 7, 718 (2012).
C. C. Williams, “ Two-dimensional dopant profiling by scanning capacitance microscopy,” Annu. Rev. Mater. Sci. 29, 471 (1999).
P. Eyben, M. Xu, N. Duhayon, T. Clarysse, S. Callewaert, and W. Vandervorst, “ Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling,” J. Vac. Sci. Technol., B 20, 471 (2002).
E. Latu-Romain, P. Gilet, N. Chevalier, D. Mariolle, F. Bertin, G. Feuillet, and A. Chelnokov, “ Surface-induced p-type conductivity in ZnO nanopillars investigated by scanning probe microscopy,” J. Appl. Phys. 107, 124307 (2010).
L. Wang, J. Laurent, J. M. Chauveau, V. Sallet, F. Jomard, and G. Brémond, “ Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy,” Appl. Phys. Lett. 107, 192101 (2015).
L. Wang, J. M. Chauveau, R. Brenier, V. Sallet, F. Jomard, C. Sartel, and G. Brémond, “ Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy,” Appl. Phys. Lett. 108, 132103 (2016).
N. Hanèche, A. Lusson, C. Sartel, A. Marzouki, V. Sallet, M. Oueslati, F. Jomard, and P. Galtier, “ Optical characterization of nitrogen- and antimony-doped ZnO thin layers grown by MOVPE,” Phys. Status Solidi B 247, 1671 (2010).
J. K. Liang, H. L. Su, P. Y. Chuang, C. L. Kuo, S. Y. Huang, T. S. Chan, Y. C. Wu, and J. C. A. Huang, “ Origin of p-type conductivity of Sb-doped ZnO nanorods and the local structure around Sb ions,” Appl. Phys. Lett. 106, 212101 (2015).
H. Liang, Y. Chen, X. Xia, Q. Feng, Y. Liu, R. Shen, Y. Luo, and G. Du, “ Influence of Sb valency on the conductivity type of Sb-doped ZnO,” Thin Solid Films 589, 199 (2015).
Z. L. Wang and J. Song, Science 312, 242 (2006).
J. Smoliner, B. Basnar, S. Golka, E. Gornik, B. Löffler, M. Schatzmayr, and H. Enichlmair, “ Mechanism of bias-dependent contrast in scanning-capacitance-microscopy images,” Appl. Phys. Lett. 79, 3182 (2001).
R. A. Oliver, “ Advances in AFM for the electrical characterization of semiconductors,” Rep. Prog. Phys. 71, 076501 (2008).
H. E. Ruda and A. Shik, “ Theoretical analysis of scanning capacitance microscopy,” Phys. Rev. B 67, 235309 (2003).
A. D. L. Bugallo, F. Donatini, C. Sartel, V. Sallet, and J. Pernot, “ Metallic core conduction in unintentionally doped ZnO nanowire,” Appl. Phys. Express 8, 025001 (2015).
H. Y. Liu, N. Izyumskaya, V. Avrutin, U. Özgür, A. B. Yankovich, A. V. Kvit, P. M. Voyles, and H. Morkoç, “ Donor behavior of Sb in ZnO,” J. Appl. Phys. 112, 033706 (2012).
S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “ Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92, 155504 (2004).

Data & Media loading...


Article metrics loading...



ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effect as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd