Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Fantini, D. J. Wouters, R. Degraeve, L. Goux, L. Pantisano, G. Kar, Y.-Y. Chen, B. Govoreanu, J. A. Kittl, L. Altimime, and M. Jurczak, “ Intrinsic switching behavior in HfO2 RRAM by fast electrical measurements on novel 2R test structures,” in 2012 4th IEEE International Memory Workshop, Milan, 20–23 May 2012 (IEEE, 2012).
D. J. Wouters, L. Zhang, A. Fantini, R. Degraeve, L. Goux, Y. Y. Chen, B. Govoreanu, G. S. Kar, G. V. Groeseneken, and M. Jurczak, “ Analysis of complementary RRAM switching,” IEEE Electron Device Lett. 33, 1186 (2012).
Z. Wei, K. Eriguchi, S. Muraoka, K. Katayama, R. Yasuhara, K. Kawai, Y. Ikeda, M. Yoshimura, Y. Hayakawa, K. Shimakawa, T. Mikawa, and S. Yoneda, “ Distribution projecting the reliability for 40 nm ReRAM and beyond based on stochastic differential equation,” in 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 7–9 Dec. 2015 (2015).
A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “ Colossal electro-resistance memory effect at metal/La2CuO4 interfaces,” Jpn. J. Appl. Phys., Part 2 44, L1241 (2005).
A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “ Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett. 77, 139 (2000).
M. Maestro, J. Martin-Martinez, J. Diaz, A. Crespo-Yepes, M. B. Gonzalez, R. Rodriguez, F. Campabadal, M. Nafria, and X. Aymerich, “ Analysis of Set and Reset mechanism in Ni/HfO2-based RRAM with fast ramped voltages,” Microelectron. Eng. 147, 176 (2015).
C. Schindler, G. Staikov, and R. Waser, “ Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories,” Appl. Phys. Lett. 94, 072109 (2009).
V. G. Karpov, M. Nardone, and M. Simon, “ Thermodynamics of second phase conductive filaments,” J. Appl. Phys. 109, 114507 (2011).
S. Nayakshin and F. Mela, “ Self-consistent Fokker-Planck treatment of particle distributions in astrophysical plasmas,” Astrophys. J. 114, 269 (1998).
M. A. Panzer, M. Shandalov, J. A. Rowlette, Y. Oshima, Y. W. Chen, P. C. McIntyre, and K. E. Goodson, “ Thermal properties of ultrathin hafnium oxide gate dielectric films,” IEEE Electron Device Lett. 30, 1269 (2009).
S. Yu and H.-S. P. Wong, “ Compact modeling of conducting-bridge random-access memory (CBRAM),” IEEE Trans. Electron Devices 58, 1352 (2011).
D. Adler, H. K. Henisch, and S. N. Mott, “ The mechanism of threshold switching in amorphous alloys,” Rev. Mod. Phys. 50, 209 (1978).
E. Falcon, B. Castaing, and M. Creyssels, “ Nonlinear electrical conductivity in a 1D granular medium,” Eur. Phys. J. B 38, 475 (2004).
P. Bquin and V. Tournat, “ Electrical conduction and Joule effect in one-dimensional chains of metallic beads: Hysteresis under cycling DC currents and influence of electromagnetic pulses,” Granular Matter 12, 375385 (2010).
K. E. Guthe, “ On the action of the coherer,” Phys. Rev. 12, 245 (1901);
K. E. Guthe and A. Trowbridge, “ On the theory of the coherer,” Phys. Rev. 11, 22 (1900).
M. Nardone, V. G. Karpov, C. Jackson, and I. V. Karpov, “ Unified model of nucleation switching,” Appl. Phys. Lett. 94, 103509 (2009).
E. Hildebrandt, J. Kurian, M. M. Muller, T. Schroeder, H.-J. Kleebe, and L. Alff, “ Controlled oxygen vacancy p-type conductivity in HfO2-x thin films,” Appl. Phys. Lett. 99, 112902 (2011).
H. Y. Lee, Y. S. Chen, P. S. Chen, T. Y. Wu, F. Chen, C. C. Wang, P. J. Tzeng, M.-J. Tsai, and C. Lien, “ Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin Ti cap,” IEEE Electron Device Lett. 31, 44 (2010).
A. Kalantarian, G. Bersuker, D. C. Gilmer, D. Veksler, B. Butcher, A. Padovani, O. Pirrotta, L. Larcher, R. Geer, Y. Nishi, and P. Kirsch, “ Controlling uniformity of RRAM characteristics through the forming process,” in IEEE International Reliability Physics Symposium (IPRS) (2012), pp. 6C.4.1-4.5.
V. N. Kruchinin, V. Sh. Aliev, T. V. Perevalov, D. R. Islamov, V. A. Gritsenko, I. P. Prosvirin, C. H. Cheng, and A. Chin, “ Nanoscale potential fluctuation in non-stoichiometric HfOx and low resistive transport in RRAM,” Microelectron. Eng. 147, 165 (2015).

Data & Media loading...


Article metrics loading...



We present a thermodynamic theory of the conductive filament growth and dissolution in random access memory describing the observed features of their current-voltage (IV) characteristics. Our theory is based on the self-consisted Fokker-Planck approach reducing the filament kinetics to its thermodynamics. Expressing the observed IV features through material parameters, our results pave a way to device improvements.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd