Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/9/10.1063/1.4962219
1.
J. Wu, C.-W. Nan, Y. Lin, and Y. Deng, Phys. Rev. Lett. 89, 217601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.217601
2.
P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.052105
3.
L. He, J. B. Neaton, M. H. Cohen, D. Vanderbilt, and C. C. Homes, Phys. Rev. B 65, 214112 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.214112
4.
J. Liu, C.-G. Duan, W.-G. Yin, W. N. Mei, R. W. Smith, and J. R. Hardy, Phys. Rev. B 70, 144106 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.144106
5.
Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, Phys. Rev. Lett. 99, 037602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.037602
6.
T. Park, Z. Nussinov, K. R. A. Hazzard, V. A. Sidorov, A. V. Balatsky, J. L. Sarrao, S.-W. Cheong, M. F. Hundley, J.-S. Lee, Q. X. Jia, and J. D. Thompson, Phys. Rev. Lett. 94, 017002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.017002
7.
D. Fu, H. Taniguchi, T. Taniyama, M. Itoh, and S. Koshihara, Chem. Mater. 20, 1694 (2008).
http://dx.doi.org/10.1021/cm0710507
8.
S. Sarkar, P. Kumar Jana, and B. K. Chaudhuri, Appl. Phys. Lett. 92, 022905 (2008).
http://dx.doi.org/10.1063/1.2834854
9.
C. C. Wang and L. W. Zhang, Appl. Phys. Lett. 90, 142905 (2007).
http://dx.doi.org/10.1063/1.2719608
10.
L. Zhang and Z.-J. Tang, Phys. Rev. B 70, 174306 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.174306
11.
S. K. Deshpande, S. N. Achary, R. Mani, J. Gopalakrishnan, and A. K. Tyagi, Phys. Rev. B 84, 064301 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064301
12.
K. R. S. Preethi Meher and K. B. R. Varma, J. Appl. Phys. 105, 034113 (2009).
http://dx.doi.org/10.1063/1.3077270
13.
W. Hu, Y. Liu, R. L. Withers, T. J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, and J. Wong-Leung, Nat. Mater. 12, 821 (2013).
http://dx.doi.org/10.1038/nmat3691
14.
J. Li, F. Li, Y. Zhuang, L. Jin, L. Wang, X. Wei, Z. Xu, and S. Zhang, J. Appl. Phys. 116, 074105 (2014).
http://dx.doi.org/10.1063/1.4893316
15.
X. Wei, W. Jie, Z. Yang, F. Zheng, H. Zeng, Y. Liu, and J. Hao, J. Mater. Chem. C 3, 11005 (2015).
http://dx.doi.org/10.1039/C5TC02578H
16.
W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R. L. Withers, and Y. Liu, ACS Appl. Mater. Interfaces 7, 25321 (2015).
http://dx.doi.org/10.1021/acsami.5b07467
17.
X. Zhao, P. Liu, Y.-C. Song, A. Zhang, X. Chen, and J. Zhou, Phys. Chem. Chem. Phys. 17, 23132 (2015).
http://dx.doi.org/10.1039/C5CP02741A
18.
Y. Song, X. Wang, Y. Sui, Z. Liu, Y. Zhang, H. Zhan, B. Song, Z. Liu, Z. Lv, L. Tao, and J. Tang, Sci. Rep. 6, 21478 (2016).
http://dx.doi.org/10.1038/srep21478
19.
S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H. U. Buhl, D. C. Sinclair, and A. Loidl, Nat. Mater. 10, 899 (2011).
http://dx.doi.org/10.1038/nmat3180
20.
C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001).
http://dx.doi.org/10.1126/science.1061655
21.
S. Nannarone, F. Borgatti, A. DeLuisa, B. P. Doyle, G. C. Gazzadi, A. Giglia, P. Finetti, N. Mahne, L. Pasquali, M. Pedio, G. Selvaggi, G. Naletto, M. G. Pelizzo, and G. Tondello, AIP Conf. Proc. 705, 450 (2004).
http://dx.doi.org/10.1063/1.1757831
22.
R. Belkhou, S. Stanescu, S. Swaraj, A. Besson, M. Ledoux, M. Hajlaoui, and D. Dalle, J. Synchrotron Radiat. 22, 968 (2015).
http://dx.doi.org/10.1107/S1600577515007778
23.
R. Long and N. J. English, Phys. Rev. B 83, 155209 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155209
24.
K. K. Ghuman and C. V. Singh, J. Phys.: Condens. Matter 25, 085501 (2013).
http://dx.doi.org/10.1088/0953-8984/25/8/085501
25.
Y. Gai, J. Li, S.-S. Li, J.-B. Xia, and S.-H. Wei, Phys. Rev. Lett. 102, 036402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.036402
26.
I. S. Cho, C. H. Lee, Y. Feng, M. Logar, P. M. Rao, L. Cai, D. R. Kim, R. Sinclair, and X. Zheng, Nat. Commun. 4, 1723 (2013).
http://dx.doi.org/10.1038/ncomms2729
27.
H. Kato and A. Kudo, J. Phys. Chem. B 106, 5029 (2002).
http://dx.doi.org/10.1021/jp0255482
28.
A. Iwaszuk and M. Nolan, J. Phys.: Condens. Matter 23, 334207 (2011).
http://dx.doi.org/10.1088/0953-8984/23/33/334207
29.
D. Morris, Y. Dou, J. Rebane, C. E. J. Mitchell, R. G. Egdell, D. S. L. Law, A. Vittadini, and M. Casarin, Phys. Rev. B 61, 13445 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.13445
30.
A. J. Atanacio, T. Bak, and J. Nowotny, ACS Appl. Mater. Interfaces 4, 6626 (2012).
http://dx.doi.org/10.1021/am301729z
31.
O. Bidault, M. Maglione, M. Actis, M. Kchikech, and B. Salce, Phys. Rev. B 52, 4191 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.4191
32.
C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, and H. Wang, J. Am. Ceram. Soc. 98, 148 (2015).
http://dx.doi.org/10.1111/jace.13250
33.
C. Chen, K. B. Xu, Y. M. Cui, and C. C. Wang, Mater. Lett. 89, 153 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.08.079
34.
A. K. Jonscher, Nature 267, 673 (1977).
http://dx.doi.org/10.1038/267673a0
35.
J. P. Crocombette and F. Jollet, J. Phys.: Condens. Matter 6, 10811 (1994).
http://dx.doi.org/10.1088/0953-8984/6/49/022
36.
P. Krüger, Phys. Rev. B 81, 125121 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125121
37.
D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, Appl. Phys. Lett. 80, 2153 (2002).
http://dx.doi.org/10.1063/1.1463211
38.
M. Setvin, C. Franchini, X. Hao, M. Schmid, A. Janotti, M. Kaltak, C. G. Van de Walle, G. Kresse, and U. Diebold, Phys. Rev. Lett. 113, 086402 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.086402
39.
P. Deak, B. Aradi, and T. Frauenheim, Phys. Rev. B 83, 155207 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155207
40.
M. H. Cohen, J. B. Neaton, L. He, and D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003).
http://dx.doi.org/10.1063/1.1595708
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/9/10.1063/1.4962219
Loading
/content/aip/journal/apl/109/9/10.1063/1.4962219
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/9/10.1063/1.4962219
2016-08-31
2016-09-26

Abstract

Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/9/1.4962219.html;jsessionid=VH5N_VP1ABg9z9EWByU-O__G.x-aip-live-03?itemId=/content/aip/journal/apl/109/9/10.1063/1.4962219&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/9/10.1063/1.4962219&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/9/10.1063/1.4962219'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,