1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasmon scattering from a single gold nanoparticle collected through an optical fiber
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/86/3/10.1063/1.1851011
1.
1.U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
2.
2.S. Empedocles and M. Bawendi, Acc. Chem. Res. 32, 389 (1999).
http://dx.doi.org/10.1021/ar9501939
3.
3.K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.117401
4.
4.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, J. Phys.: Condens. Matter 14, R597 (2002).
http://dx.doi.org/10.1088/0953-8984/14/18/202
5.
5.A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).
http://dx.doi.org/10.1021/nl034372s
6.
6.S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Proc. Natl. Acad. Sci. U.S.A. 97, 996 (2000).
http://dx.doi.org/10.1073/pnas.97.3.996
7.
7.C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, Appl. Phys. Lett. 77, 2949 (2000).
http://dx.doi.org/10.1063/1.1323553
8.
8.T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4249
9.
9.A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
10.
10.G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, J. Phys. Chem. B 107, 14191 (2003).
http://dx.doi.org/10.1021/jp0357875
11.
11.T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, J. Microsc. 202, 72 (2001).
http://dx.doi.org/10.1046/j.1365-2818.2001.00817.x
12.
12.S.-K. Eah, W. Jhe, and Y. Arakawa, Rev. Sci. Instrum. 74, 4969 (2003).
http://dx.doi.org/10.1063/1.1623002
13.
13.N. R. Jana, L. Gearheart, and C. J. Murphy, Chem. Mater. 13, 2313 (2001).
http://dx.doi.org/10.1021/cm000662n
14.
14.J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
http://dx.doi.org/10.1063/1.1462610
15.
15.J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 485 (2003).
http://dx.doi.org/10.1021/nl0340475
16.
16.P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://aip.metastore.ingenta.com/content/aip/journal/apl/86/3/10.1063/1.1851011
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Experimental setup for picking up a single nanoparticle from the surface. Nikon TE200 inverted optical microscope has a objective lens with a numerical aperture of 0.85, and it is coupled to a Jobin Yvon TRIAX 190 monochromator equipped with a liquid nitrogen cooled CCD. The inset shows a SEM image of the etched fiber axicon microlens tip.

Image of FIG. 2.

Click to view

FIG. 2.

Images from scattered light collected through the objective lens during the pick-up process of a single nanoparticle from the surface by a modified fiber tip. Circled area is a target region with a single nanoparticle. (a) Before the tip approaches the surface. (b) When the tip is in shear-force feedback with the surface. (c) After the tip scans the target region and is retracted from the surface. (d) After the tip reapproaches the surface with a nanoparticle attached, both the particle and the tip scatter the evanescent field.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic diagram for measuring the scattering of a single nanoparticle in various solvents through the optical fiber. The inset shows a SEM image of a nanoparticle attached to the fiber tip.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Normalized plasmon scattering from a single gold nanoparticle in various solvents measured through the optical fiber. The offset curve is the plasmon scattering measured on a glass slide before being picked up by the modified NSOM tip. (b) Dependence of the surface plasmon peak position on the index of refraction of the solvents.

Loading

Article metrics loading...

/content/aip/journal/apl/86/3/10.1063/1.1851011
2005-01-07
2014-04-21

Abstract

A single goldnanoparticle is attached to the end of a chemically etched fiber axicon microlens tip by modifying the tip surface with linker molecules. The high collection efficiency of the fiber axicon microlens allows plasmon scattering of a single nanoparticle to be measured directly through the optical fiber. The portable nature of this probe allows direct optical sensing of environmental changes using a single nanoparticle.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/86/3/1.1851011.html;jsessionid=1oef89l8dkqq.x-aip-live-01?itemId=/content/aip/journal/apl/86/3/10.1063/1.1851011&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmon scattering from a single gold nanoparticle collected through an optical fiber
http://aip.metastore.ingenta.com/content/aip/journal/apl/86/3/10.1063/1.1851011
10.1063/1.1851011
SEARCH_EXPAND_ITEM