1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Spatial imaging and mechanical control of spin coherence in strained GaAs epilayers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/88/24/10.1063/1.2210794
1.
1.D. E. Aspnes and M. Cardona, Phys. Rev. B 15, 726 (1977).
2.
2.W. E. Carlos, S. G. Bishop, and D. J. Treacy, Appl. Phys. Lett. 49, 528 (1986).
http://dx.doi.org/10.1063/1.97101
3.
3.M. Sopanen, H. Lipsanen, and J. Ahopelto, Appl. Phys. Lett. 66, 2364 (1995).
http://dx.doi.org/10.1063/1.113984
4.
4.Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
http://dx.doi.org/10.1126/science.1105514
5.
5.Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Nature (London) 427, 50 (2004).
http://dx.doi.org/10.1038/nature02202
6.
6.S. A. Crooker and D. L. Smith, Phys. Rev. Lett. 94, 236601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.236601
7.
7.J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).
http://dx.doi.org/10.1126/science.287.5452.473
8.
8.G. Salis, D. T. Fuchs, J. M. Kikkawa, Y. Ohno, H. Ohno, and D. D. Awschalom, Phys. Rev. Lett. 86, 2677 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2677
9.
9.G. Salis, Y. Ohno, H. Ohno, and D. D. Awschalom, Phys. Rev. B 64, 195304 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195304
10.
10.Fourteen samples in all were measured from six separate wafers.
11.
11.J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4313
12.
12.S. A. Crooker, D. D. Awschalom, and N. Samarth, IEEE J. Sel. Top. Quantum Electron. 1, 1082 (1995).
http://dx.doi.org/10.1109/2944.488685
13.
13.This was desirable for the TRKR measurement, as the DNP creates a large additional effective magnetic field, greatly altering the observed precession frequency of the electrons. The DNP could be removed by blocking the laser and reversing the applied field for a short time.
14.
14.G. Lampel, Phys. Rev. Lett. 20, 491 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.491
15.
15.D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.5780
16.
16.C. Jagannath and R. L. Aggarwal, Phys. Rev. B 32, 2243 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.2243
17.
17.V. I. Safarov and A. N. Titkov, Physica B & C 117–118, 497 (1983).
18.
18.M. Ilegems, in The Technology and Physics of Molecular Beam Epitaxy, edited by E. H. C. Parker (Plenum, London, 1985).
19.
19.L. Pavesi and M. Guzzi, J. Appl. Phys. 75, 4779 (1994).
http://dx.doi.org/10.1063/1.355769
20.
20.K. S. Kim, G. M. Yang, H. W. Shim, K. Y. Lim, E. Suh, and H. J. Leeb, J. Appl. Phys. 82, 5103 (1997).
http://dx.doi.org/10.1063/1.366311
21.
21.This value is based on a biaxial strain system in contrast to our largely uniaxial geometry, making comparison difficult.
22.
22.M. Poggio and D. D. Awschalom, Appl. Phys. Lett. 86, 182103 (2005).
http://dx.doi.org/10.1063/1.1923191
23.
23.S. K. Buratto, D. N. Shykind, and D. P. Weitekamp, Phys. Rev. B 44, 9035 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.9035
24.
24.S. E. Barrett, R. Tycko, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72, 1368 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1368
25.
25.P. L. Kuhns, A. Kleinhammes, T. Schmiedel, P. Chabrier, S. Sloan, E. Hughes, C. R. Bowers, and W. G. Moulton, Phys. Rev. B 55, 7824 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7824
26.
26.D. J. Guerrier and R. T. Harley, Appl. Phys. Lett. 70, 1739 (1997).
http://dx.doi.org/10.1063/1.118686
27.
27.M. Eickhoff, B. Lenzmann, S. E. Hayes, A. D. Wieck, and D. Suter, Phys. Rev. B 67, 085308 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085308
28.
28.Considered for the current geometry; applied field ⊥ electron spin polarization.
29.
29.A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653 (1996).
http://dx.doi.org/10.1063/1.117548
http://aip.metastore.ingenta.com/content/aip/journal/apl/88/24/10.1063/1.2210794
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color) (a) Schematic of the experimental setup and stress geometry. The laser is directed along the growth axis ( axis). A threaded rod (1) pushes the wedge (2) past the chip breaker (3), forcing it against the back of the sample. Strain is produced (4) in the plane of the sample, compressive in the rear and tensile in the active layer (black region). (b) Kerr rotation as a function of delay time for the strained (solid line) and unstrained (open circle) areas of the sample . The Kerr rotation is proportional to the conduction electron polarization along . can be obtained from the period of the oscillations in the Kerr rotation, from the curve decay.

Image of FIG. 2.

Click to view

FIG. 2.

(Color) (a) Top down, spatial maps of donor-bound exciton group PL, exciton group PL, effective factor, and over the entire sample. Symbols from line cuts in (c) pictured on images. (b) PL from strained (square) and unstrained (circle) areas of the sample. Overlaid are Lorentzian fits used to extract peak shifts. (c) Line cuts along of group PL energy (solid square), effective factor (open square), and (open circle) from spatially resolved maps in Fig. 2(a) . For the PL, the maximum shift on the center is . The TRKR and PL measurements are performed at .

Image of FIG. 3.

Click to view

FIG. 3.

(Color) (a) NMR transitions for maximum (solid line) and minimum (open circle) strain. Arrows highlight resonant nuclear depolarization at (from left to right) , , , and . (b) dependence of the NQR field along the sample. Pictured in the center is a schematic of the line cut orientation. Transitions are plotted in nuclear frequency shift (left) and magnetic field (right). (c) Dynamically polarized nuclear field vs laboratory time for varying strains. The square symbol is for the lowest strain; triangle is for the highest . (d) dependence of NQR field. Unless noted, all measurements are performed at .

Loading

Article metrics loading...

/content/aip/journal/apl/88/24/10.1063/1.2210794
2006-06-14
2014-04-21

Abstract

The effect of uniaxial tensile strain on spin coherence in -type GaAs epilayers is probed using time-resolved Kerr rotation, photoluminescence, and optically detected nuclear magnetic resonance spectroscopies. The band gap, electron spin lifetime, electron factor, and nuclear quadrupole splitting are simultaneously imaged over millimeter scale areas of the epilayers for continuously varying values of strain. All-optical nuclear magnetic resonance techniques allow access to the strain-induced nuclear quadrupolar resonance splitting in field regimes not easily addressable using conventional optically detected nuclear magnetic resonance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/88/24/1.2210794.html;jsessionid=1ozs5yaqq4cyw.x-aip-live-02?itemId=/content/aip/journal/apl/88/24/10.1063/1.2210794&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spatial imaging and mechanical control of spin coherence in strained GaAs epilayers
http://aip.metastore.ingenta.com/content/aip/journal/apl/88/24/10.1063/1.2210794
10.1063/1.2210794
SEARCH_EXPAND_ITEM