1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Spatial imaging and mechanical control of spin coherence in strained GaAs epilayers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/88/24/10.1063/1.2210794
1.
1.D. E. Aspnes and M. Cardona, Phys. Rev. B 15, 726 (1977).
2.
2.W. E. Carlos, S. G. Bishop, and D. J. Treacy, Appl. Phys. Lett. 49, 528 (1986).
http://dx.doi.org/10.1063/1.97101
3.
3.M. Sopanen, H. Lipsanen, and J. Ahopelto, Appl. Phys. Lett. 66, 2364 (1995).
http://dx.doi.org/10.1063/1.113984
4.
4.Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
http://dx.doi.org/10.1126/science.1105514
5.
5.Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Nature (London) 427, 50 (2004).
http://dx.doi.org/10.1038/nature02202
6.
6.S. A. Crooker and D. L. Smith, Phys. Rev. Lett. 94, 236601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.236601
7.
7.J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).
http://dx.doi.org/10.1126/science.287.5452.473
8.
8.G. Salis, D. T. Fuchs, J. M. Kikkawa, Y. Ohno, H. Ohno, and D. D. Awschalom, Phys. Rev. Lett. 86, 2677 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2677
9.
9.G. Salis, Y. Ohno, H. Ohno, and D. D. Awschalom, Phys. Rev. B 64, 195304 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195304
10.
10.Fourteen samples in all were measured from six separate wafers.
11.
11.J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4313
12.
12.S. A. Crooker, D. D. Awschalom, and N. Samarth, IEEE J. Sel. Top. Quantum Electron. 1, 1082 (1995).
http://dx.doi.org/10.1109/2944.488685
13.
13.This was desirable for the TRKR measurement, as the DNP creates a large additional effective magnetic field, greatly altering the observed precession frequency of the electrons. The DNP could be removed by blocking the laser and reversing the applied field for a short time.
14.
14.G. Lampel, Phys. Rev. Lett. 20, 491 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.491
15.
15.D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.5780
16.
16.C. Jagannath and R. L. Aggarwal, Phys. Rev. B 32, 2243 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.2243
17.
17.V. I. Safarov and A. N. Titkov, Physica B & C 117–118, 497 (1983).
18.
18.M. Ilegems, in The Technology and Physics of Molecular Beam Epitaxy, edited by E. H. C. Parker (Plenum, London, 1985).
19.
19.L. Pavesi and M. Guzzi, J. Appl. Phys. 75, 4779 (1994).
http://dx.doi.org/10.1063/1.355769
20.
20.K. S. Kim, G. M. Yang, H. W. Shim, K. Y. Lim, E. Suh, and H. J. Leeb, J. Appl. Phys. 82, 5103 (1997).
http://dx.doi.org/10.1063/1.366311
21.
21.This value is based on a biaxial strain system in contrast to our largely uniaxial geometry, making comparison difficult.
22.
22.M. Poggio and D. D. Awschalom, Appl. Phys. Lett. 86, 182103 (2005).
http://dx.doi.org/10.1063/1.1923191
23.
23.S. K. Buratto, D. N. Shykind, and D. P. Weitekamp, Phys. Rev. B 44, 9035 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.9035
24.
24.S. E. Barrett, R. Tycko, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72, 1368 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1368
25.
25.P. L. Kuhns, A. Kleinhammes, T. Schmiedel, P. Chabrier, S. Sloan, E. Hughes, C. R. Bowers, and W. G. Moulton, Phys. Rev. B 55, 7824 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7824
26.
26.D. J. Guerrier and R. T. Harley, Appl. Phys. Lett. 70, 1739 (1997).
http://dx.doi.org/10.1063/1.118686
27.
27.M. Eickhoff, B. Lenzmann, S. E. Hayes, A. D. Wieck, and D. Suter, Phys. Rev. B 67, 085308 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085308
28.
28.Considered for the current geometry; applied field ⊥ electron spin polarization.
29.
29.A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653 (1996).
http://dx.doi.org/10.1063/1.117548
http://aip.metastore.ingenta.com/content/aip/journal/apl/88/24/10.1063/1.2210794
Loading
/content/aip/journal/apl/88/24/10.1063/1.2210794
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/88/24/10.1063/1.2210794
2006-06-14
2014-09-03

Abstract

The effect of uniaxial tensile strain on spin coherence in -type GaAs epilayers is probed using time-resolved Kerr rotation, photoluminescence, and optically detected nuclear magnetic resonance spectroscopies. The band gap, electron spin lifetime, electron factor, and nuclear quadrupole splitting are simultaneously imaged over millimeter scale areas of the epilayers for continuously varying values of strain. All-optical nuclear magnetic resonance techniques allow access to the strain-induced nuclear quadrupolar resonance splitting in field regimes not easily addressable using conventional optically detected nuclear magnetic resonance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/88/24/1.2210794.html;jsessionid=8jrgkshos4oq9.x-aip-live-02?itemId=/content/aip/journal/apl/88/24/10.1063/1.2210794&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spatial imaging and mechanical control of spin coherence in strained GaAs epilayers
http://aip.metastore.ingenta.com/content/aip/journal/apl/88/24/10.1063/1.2210794
10.1063/1.2210794
SEARCH_EXPAND_ITEM