1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/89/14/10.1063/1.2358931
1.
1.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2.Semiconductor Spintronics and Quantum Computation, edited by D. D. Awschalom, D. Loss, and N. Samarth (Springer, Berlin, 2002).
3.
3.A. Tackeuchi, O. Wada, and Y. Nishikawa, Appl. Phys. Lett. 70, 1131 (1997).
http://dx.doi.org/10.1063/1.118506
4.
4.K. C. Hall, S. W. Leonard, H. M. van Driel, A. R. Kost, E. Selvig, and D. H. Chow, Appl. Phys. Lett. 75, 4156 (1999).
http://dx.doi.org/10.1063/1.125586
5.
5.S. Akasaka, S. Miyata, T. Kuroda, and A. Tackeuchi, Appl. Phys. Lett. 85, 2083 (2004).
http://dx.doi.org/10.1063/1.1792376
6.
6.D. Marshall, M. Mazilu, A. Miller, and C. C. Button, J. Appl. Phys. 91, 4049 (2002).
http://dx.doi.org/10.1063/1.1454194
7.
7.A. Tackeuchi, S. Muto, T. Inata, and T. Fugii, Appl. Phys. Lett. 56, 2213 (1990).
http://dx.doi.org/10.1063/1.102970
8.
8.Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and N. Yokoyama, Appl. Phys. Lett. 66, 839 (1995).
http://dx.doi.org/10.1063/1.113439
9.
9.M. Oestreich, S. Hallstein, and W. W. Ruhle, IEEE J. Sel. Top. Quantum Electron. 2, 747 (1996).
http://dx.doi.org/10.1109/2944.571776
10.
10.D. A. Buell, D. Feezell, B. O. Finland, and L. A. Coldren, J. Vac. Sci. Technol. B 24, 1544 (2006).
http://dx.doi.org/10.1116/1.2200380
11.
11.D. Feezell, D. A. Buell, and L. A. Coldren, IEEE Photonics Technol. Lett. 17, 2017 (2005).
12.
12.W. H. Lau and M. E. Flatté, Phys. Rev. B 72, 161311(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.161311
13.
13.W. H. Lau, J. T. Olesberg, and M. E. Flatté, e-print cond-mat/0406201.
14.
14.S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, Phys. Rev. B 56, 7574 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.7574
15.
15.Y. Lin, J. Nitta, T. Koga, and T. Akazaki, Physica E (Amsterdam) 21, 656 (2004).
http://dx.doi.org/10.1016/j.physe.2003.11.098
16.
16.O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Spinger, Berlin, 2003).
17.
17.M. I. D’yakanov and V. I. Perel’, Zh. Eksp. Teor. Fiz. 60, 1954 (1971)
17.M. I. D’yakanov and V. I. Perel’,[Sov. Phys. JETP 42, 1053 (1971)].
18.
18.Band structure parameters used in the calculations can be found in Ref. 13.
http://aip.metastore.ingenta.com/content/aip/journal/apl/89/14/10.1063/1.2358931
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color) (a) Sample structure of multiple quantum wells, where and , and signifies the growth repetition. The average aluminum concentrations of the quantum wells and barriers are and , respectively. (b) Photoluminescence spectra at room temperature. The vertical arrows indicate the positions of the calculated effective band gaps. The intensity of the PL spectra for samples C and D is scaled for clarity.

Image of FIG. 2.

Click to view

FIG. 2.

(Color) Time-resolved Kerr rotation of sample A at room temperature for (a) and (b) and sample D for (c) and (d) . Offset is subtracted for clarity. The circles are measurements and lines are fits using the expression for .

Image of FIG. 3.

Click to view

FIG. 3.

(Color) (a) Electron spin coherence time and (b) spin precession frequency as a function of magnetic field at room temperature. The corresponding lines are linear fits.

Image of FIG. 4.

Click to view

FIG. 4.

(Color) Electron effective -factor (a), electron spin coherence time for (b), and calculated (c) as a function of . The red crosses represent the calculated assuming . is the electron density used in the calculations. The line is a guide for the eyes.

Loading

Article metrics loading...

/content/aip/journal/apl/89/14/10.1063/1.2358931
2006-10-03
2014-04-20

Abstract

Time-resolved Kerr rotation spectroscopy is used to monitor the room temperature electron spin dynamics of optical telecommunication wavelength AlInGaAs multiple quantum wells lattice matched to InP. The authors found that electron spin coherence times and effective factors vary as a function of aluminum concentration. The measured electron spin coherence times of these multiple quantum wells, with wavelengths ranging from , reach approximately at room temperature, and the measured electron effective factors are in the range from .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/89/14/1.2358931.html;jsessionid=166ozh913sx99.x-aip-live-01?itemId=/content/aip/journal/apl/89/14/10.1063/1.2358931&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells
http://aip.metastore.ingenta.com/content/aip/journal/apl/89/14/10.1063/1.2358931
10.1063/1.2358931
SEARCH_EXPAND_ITEM