Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. A. Dheer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
2.P. G. Collines and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996).
3.L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, Appl. Phys. Lett. 76, 2071 (2000).
4.Eric Minoux, O. Groening, K. B. K. Teo, H. Dalal, L. Gangloff, J. Ph. Schnell, L. Hudanski, I. Y. Y. Bu, P. Vincent, P. Legagneux, G. A. J. Amaratunga, and W. I. Milnes, Nano Lett. 5, 2135 (2005).
5.Yun-Hi Lee, Yoon-Taek Jang, Dong-Ho Kim, Jin-Ho Ahn, and Byeong-Kwon Ju, Adv. Mater. (Weinheim, Ger.) 13, 479 (2001).<479::AID-ADMA479>3.0.CO;2-H
6.C. C. Chuang, J. H. Huang, C. C. Lee, and Y. Y. Chang, J. Vac. Sci. Technol. B 23, 772 (2005).
7.M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo, and G. A. J. Amaratunga, Appl. Phys. Lett. 79, 2079 (2001).
8.K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, and D. G. Hasko, Appl. Phys. Lett. 80, 2011 (2002).
9.Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren, Appl. Phys. Lett. 80, 4018 (2002).
10.S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, Appl. Phys. Lett. 82, 3520 (2003).
11.A. N. Andriotis, M. Menon, G. Froudakis, and J. E. Lowther, Chem. Phys. Lett. 301, 503 (1999).
12.A. N. Andriotis and M. Menon, Phys. Rev. B 60, 4521 (1999).
13.Y. Chen, D. T. Shaw, and L. Guo, Appl. Phys. Lett. 76, 2469 (2000).
14.H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000).
15.V. T. Binch, N. Gracia, and S. T. Purcell, Advances in Imaging and Electron Physics (Academic, San Diego, 1996), Vol. 12, p. 15.
16.K. Shen, D. L. Tierney, and T. Pietraß, Phys. Rev. B 68, 165418 (2003).
17.Yun-Hi Lee, Hoon Kim, Dong-Ho Kim, and Byeong-Kwon Ju, J. Electrochem. Soc. 147, 3564 (2000).
18.R. C. Handley, Modern Magnetic Materials (Wiley, New York, 2000), Vol. 12, Chap. 12, p. 436.

Data & Media loading...


Article metrics loading...



We report the electron paramagnetic resonancecharacteristics of catalytic residues for in situ grown carbon nanotube field electron emitter and present direct evidence that field electron emission in carbon nanotube sheets grown on various catalytic nanodots/-coated Si substrate with low-pressure chemical vapor deposition is influenced by the magnetism of catalytic metals and thus the electrical properties of the nanotubes. The nanotubes with weak trace of ferromagnetism, which originated from the catalysts, show lower turn-on emission field and higher electron emission current than those with distinct ferromagneticproperties. A strong relationship between the ferromagnetism of nanocrystalline catalysts and field electron emissioncharacteristics of nanotubes can be utilized for the development of an efficient carbon nanotube based-field electron emitter.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd