1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Magnetic catalyst residues and their influence on the field electron emission characteristics of low temperature grown carbon nanotubes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/89/8/10.1063/1.2267342
1.
1.W. A. Dheer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
http://dx.doi.org/10.1038/354056a010.1038/363603a0
2.
2.P. G. Collines and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996).
http://dx.doi.org/10.1063/1.117638
3.
3.L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, Appl. Phys. Lett. 76, 2071 (2000).
http://dx.doi.org/10.1063/1.126258
4.
4.Eric Minoux, O. Groening, K. B. K. Teo, H. Dalal, L. Gangloff, J. Ph. Schnell, L. Hudanski, I. Y. Y. Bu, P. Vincent, P. Legagneux, G. A. J. Amaratunga, and W. I. Milnes, Nano Lett. 5, 2135 (2005).
http://dx.doi.org/10.1021/nl051397d
5.
5.Yun-Hi Lee, Yoon-Taek Jang, Dong-Ho Kim, Jin-Ho Ahn, and Byeong-Kwon Ju, Adv. Mater. (Weinheim, Ger.) 13, 479 (2001).
http://dx.doi.org/10.1002/1521-4095(200104)13:7<479::AID-ADMA479>3.0.CO;2-H
6.
6.C. C. Chuang, J. H. Huang, C. C. Lee, and Y. Y. Chang, J. Vac. Sci. Technol. B 23, 772 (2005).
http://dx.doi.org/10.1116/1.1880132
7.
7.M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo, and G. A. J. Amaratunga, Appl. Phys. Lett. 79, 2079 (2001).
http://dx.doi.org/10.1063/1.1406557
8.
8.K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, and D. G. Hasko, Appl. Phys. Lett. 80, 2011 (2002).
http://dx.doi.org/10.1063/1.1461868
9.
9.Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren, Appl. Phys. Lett. 80, 4018 (2002).
http://dx.doi.org/10.1063/1.1482790
10.
10.S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, Appl. Phys. Lett. 82, 3520 (2003).
http://dx.doi.org/10.1063/1.1576310
11.
11.A. N. Andriotis, M. Menon, G. Froudakis, and J. E. Lowther, Chem. Phys. Lett. 301, 503 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00059-7
12.
12.A. N. Andriotis and M. Menon, Phys. Rev. B 60, 4521 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.4521
13.
13.Y. Chen, D. T. Shaw, and L. Guo, Appl. Phys. Lett. 76, 2469 (2000).
http://dx.doi.org/10.1063/1.126379
14.
14.H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000).
http://dx.doi.org/10.1063/1.126164
15.
15.V. T. Binch, N. Gracia, and S. T. Purcell, Advances in Imaging and Electron Physics (Academic, San Diego, 1996), Vol. 12, p. 15.
16.
16.K. Shen, D. L. Tierney, and T. Pietraß, Phys. Rev. B 68, 165418 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.165418
17.
17.Yun-Hi Lee, Hoon Kim, Dong-Ho Kim, and Byeong-Kwon Ju, J. Electrochem. Soc. 147, 3564 (2000).
http://dx.doi.org/10.1149/1.1393939
18.
18.R. C. Handley, Modern Magnetic Materials (Wiley, New York, 2000), Vol. 12, Chap. 12, p. 436.
http://aip.metastore.ingenta.com/content/aip/journal/apl/89/8/10.1063/1.2267342
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Typical SEM photographs of the catalytic nanodots of (a) -thick Ni and (b) thick Ni before the growth of CNTs. The size of nanodots varies with the change of the thickness of the catalytic metal. (c) An enlarged HRTEM image showing the existence of residue at tip end of CNT. (d) The residue is identified as Ni through energy dispersive spectra of the tip end (c).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Ferromagnetic resonance spectra for the catalytic nanodots of Ni just before the growth of CNTs. (b) CNTs with (a) of Fig. 1 and (c) CNTs with (b) of Fig. 1. (d) Typical magnetization-applied field loops for the Ni nanodot corresponding to (b) and (c).

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Field emission current vs applied electric field characteristics after initial burn-in. Inset figures show the Fowler-Nordheim plots of the current–electric-field data as shown (a). The linear fit indicates that the electron emission was dominated by the FN tunneling process. (b) Electrical resistivity vs temperature for the CNTs.

Loading

Article metrics loading...

/content/aip/journal/apl/89/8/10.1063/1.2267342
2006-08-24
2014-04-17

Abstract

We report the electron paramagnetic resonancecharacteristics of catalytic residues for in situ grown carbon nanotube field electron emitter and present direct evidence that field electron emission in carbon nanotube sheets grown on various catalytic nanodots/-coated Si substrate with low-pressure chemical vapor deposition is influenced by the magnetism of catalytic metals and thus the electrical properties of the nanotubes. The nanotubes with weak trace of ferromagnetism, which originated from the catalysts, show lower turn-on emission field and higher electron emission current than those with distinct ferromagneticproperties. A strong relationship between the ferromagnetism of nanocrystalline catalysts and field electron emissioncharacteristics of nanotubes can be utilized for the development of an efficient carbon nanotube based-field electron emitter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/89/8/1.2267342.html;jsessionid=16sbnph44c5ck.x-aip-live-06?itemId=/content/aip/journal/apl/89/8/10.1063/1.2267342&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic catalyst residues and their influence on the field electron emission characteristics of low temperature grown carbon nanotubes
http://aip.metastore.ingenta.com/content/aip/journal/apl/89/8/10.1063/1.2267342
10.1063/1.2267342
SEARCH_EXPAND_ITEM