Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/91/6/10.1063/1.2768633
1.
1.Y. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Phys. Rev. Lett. 93, 176601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.176601
2.
2.Y. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
http://dx.doi.org/10.1126/science.1105514
3.
3.V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, Phys. Rev. Lett. 97, 096605 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.096605
4.
4.J. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett. 96, 076604 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.076604
5.
5.W.-K. Tse, J. Fabian, I. Zutić, and S. Das Sarma, Phys. Rev. B 72, 241303(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.241303
6.
6.S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006).
http://dx.doi.org/10.1038/nature04937
7.
7.N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.126603
8.
8.J. Stephens, R. K. Kawakami, J. Berezovsky, M. Hanson, D. P. Shepherd, A. C. Gossard, and D. D. Awschalom, Phys. Rev. B 68, 041307(R) (2003).
http://dx.doi.org/10.1103/PhysRevB.68.041307
9.
9.M. Beck, C. Metzner, S. Malzer, and G. H. Döhler, Europhys. Lett. 75, 597 (2006).
http://dx.doi.org/10.1209/epl/i2006-10151-4
10.
10.I. Finkler, H.-A. Engel, E. I. Rashba, and B. I. Halperin, Phys. Rev. B 75, 241202(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.75.241202
11.
11.M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.5312
http://aip.metastore.ingenta.com/content/aip/journal/apl/91/6/10.1063/1.2768633
Loading
/content/aip/journal/apl/91/6/10.1063/1.2768633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/91/6/10.1063/1.2768633
2007-08-08
2016-02-11

Abstract

Electrically generated spin accumulation due to the spin Hall effect is imaged in channels using Kerr rotation microscopy, focusing on its spatial distribution and time-averaged behavior in a magnetic field.Spatially resolved imaging reveals that spin accumulation observed in transverse arms develops due to the longitudinal drift of spin polarization produced at the sample boundaries. One- and two-dimensional drift-diffusion modeling is used to explain these features, providing a more complete understanding of observations of spin accumulation and the spin Hall effect.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/91/6/1.2768633.html;jsessionid=9b8n1lrel40sr.x-aip-live-03?itemId=/content/aip/journal/apl/91/6/10.1063/1.2768633&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd