Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/91/8/10.1063/1.2773937
1.
1.F. Mafunè, J. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B 104, 9111 (2000).
http://dx.doi.org/10.1021/jp001336y
2.
2.A. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner, and F. Bozon-Verduraz, Chem. Phys. Lett. 348, 182, (2001).
3.
3.A. V. Kabashin and M. Meunier, J. Appl. Phys. 94, 7941 (2003).
http://dx.doi.org/10.1063/1.1626793
4.
4.B. Liu, Z. Hu, Y. Che, Y. Cheng, and X. Pan, Appl. Phys. Lett. 90, 044103 (2007).
http://dx.doi.org/10.1063/1.2434168
5.
5.S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, Appl. Phys. A: Mater. Sci. Process. 87, 47 (2007).
http://dx.doi.org/10.1007/s00339-006-3852-1
6.
6.J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, J. Anal. At. Spectrom. 19, 267 (2004).
http://dx.doi.org/10.1039/b310512a
7.
7.A. Ostendorf, G. Kamlage, U. Klug, F. Korte, and B. N. Chichkov, Proc. SPIE 5713, 1 (2005).
http://dx.doi.org/10.1117/12.597975
8.
8.T. Tsuji, K. Iryo, N. Watanabe, and M. Tsuji, Appl. Surf. Sci. 202, 80 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00936-4
9.
9.F. Mafunè, J. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B 107, 4218 (2003).
http://dx.doi.org/10.1021/jp021580k
10.
10.F. González-Caballero and V. N. Shilov, Encyclopedia of Surface and Colloidal Science (Taylor and Francis, Boca Raton, 2006), Vol. 2, p. 1932.
11.
11.A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, Appl. Surf. Sci. 138, 311 (1999).
http://dx.doi.org/10.1016/S0169-4332(98)00411-5
http://aip.metastore.ingenta.com/content/aip/journal/apl/91/8/10.1063/1.2773937
Loading
/content/aip/journal/apl/91/8/10.1063/1.2773937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/91/8/10.1063/1.2773937
2007-08-23
2016-08-30

Abstract

Fabrication of silvernanoparticlecolloids using ultrashort pulse laser ablation in water is studied. Ablation in liquid flow improves the reproducibility and increases the nanoparticle productivity by 380% compared to stationary liquid.Femtosecond laserablation in water is 20% more efficient than picosecond laser ablation, but due to higher picosecond laser power (higher repetition rate), the nanoparticle productivity at the same pulse fluence is three times higher for picosecond laser ablation. With picosecond laser pulses, the maximum productivity of is achieved at a pulse energy of and repetition rate of .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/91/8/1.2773937.html;jsessionid=0NkVwvPb9YXqCsO2ZE6P1GXN.x-aip-live-02?itemId=/content/aip/journal/apl/91/8/10.1063/1.2773937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/91/8/10.1063/1.2773937&pageURL=http://scitation.aip.org/content/aip/journal/apl/91/8/10.1063/1.2773937'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,