NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Gorrarelli, S. Masiero, E. Mezzina, S. Pieraccini, J. P. Pabe, P. Samorí, and G. P. Spada, Chem.-Eur. J. 6, 3242 (2000).<3242::AID-CHEM3242>3.0.CO;2-K
2.G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, and R. Rinaldi, Nano Lett. 3, 479 (2003).
3.R. Rinaldi, G. Maruccio, A. Biasco, V. Arima, R. Cingolani, T. Giorgi, S. Masiero, G. P. Spada, and G. Gottarelli, Nanotechnology 13, 398 (2002).
4.U. Schüehle, J.-F. E. Hochedez, J. L. Pau, C. Rivera, E. Muñoz, J. Alvarez, J.-P. Kleider, P. Lemaire, T. Appourchaux, B. Fleck, A. Peacock, M. Richter, U. Kroth, A. Gottwald, M.-C. Castex, A. Deneuville, P. Muret, M. Nesladek, F. Omnes, J. John, and C. Van Hoof, Proc. SPIE 5171, 231 (2004).
5.C. D. Hodgman and W. R. Veazey, Handbook of Chemistry and Physics, 47th ed. (Chemical Rubber, Cleveland, 1996), p. E68.
6.N. W. Ashcroft and N. D. Mermim, Solid State Physics (Saunders College, Philadelphia, 1976), p. 364.
7.G. M. Barrow, Physical Chemistry, 5th ed. (McGraw-Hill, New York, 1988), p. 581.
8.H. Sugiyama and I. Saito, J. Am. Chem. Soc. 118, 7063 (1996).
9.S. D. Wetmore, R. J. Boyd, and L. A. Eriksson, Chem. Phys. Lett. 322, 129 (2000).
10.D. Huang, M. A. Reschikov, and H. Morkoç, Int. J. High Speed Electron. Syst. 12, 79 (2002).
11.A. Neogi, H. Morkoc, T. Kuroda, and A. Tackeuchi, IEEE Trans. Nanotechnol. 2, 10 (2003).
12.A. Neogi, J. Li, P. B. Neogi, A. Sarkar, and H. Morkoc, Electron. Lett. 40, 1605 (2004).
13.L. H. Koole, H. M. Moody, N. L. H. L. Broders, P. J. L. M. Quaedflieg, W. H. A. Kuijpers, M. H. P. van Genderen, A. J. J. M. Coenen, S. van der Wal, and H. M. Buck, J. Org. Chem. 54, 1657 (1989).
14.S. M. Sze, D. J. Coleman, and A. Lya, Solid-State Electron. 14, 1209 (1971).

Data & Media loading...


Article metrics loading...



Nanoscale hybrid molecular organic photodetectors based on self-assembled guanosine molecules conjugated to wide-bandgap GaNsemiconductors has been realized in the ultraviolet wavelength regime. Metal-semiconductor-metal based photodetector is fabricated using ordering of modified guanosine based semiconductor nanowires which exhibit characteristics with high current response and higher rectification ratio compared to Si based hybrid photodetectors. Photocurrent response of a two-terminal device shows the typical characteristics of a semiconductorphotodiode with a cutoff wavelength at . The characteristics have been elucidated using the induced polarization properties of self-assembled guanosine semiconductor.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-assembled deoxyguanosine based molecular electronic device on GaN substrates