1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Hydrostatic pressure effects on poly(3-hexylthiophene) thin film transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/1/10.1063/1.2830330
1.
1.H. Sirringhaus, N. Tessler, and R. H. Friend, Synth. Met. 102, 857 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00365-8
2.
2.G. Wang, J. Swensen, D. Moses, and A. J. Heeger, J. Appl. Phys. 93, 6137 (2003).
http://dx.doi.org/10.1063/1.1568526
3.
3.S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, IEEE Trans. Electron Devices 49, 2008 (2002).
http://dx.doi.org/10.1109/TED.2002.803642
4.
4.J. G. Lee, Y. G. Seol, and N.-E. Lee, Thin Solid Films 515, 805 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.209
5.
5.S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, and M. G. Kwak, Synth. Met. 139, 377 (2003).
http://dx.doi.org/10.1016/S0379-6779(03)00195-4
6.
6.Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, and J. I. Han, Jpn. J. Appl. Phys., Part 1 43, 3605 (2004).
http://dx.doi.org/10.1143/JJAP.43.3605
7.
7.H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).
http://dx.doi.org/10.1126/science.280.5370.1741
8.
8.J. A. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, IEEE Electron Device Lett. 21, 100 (2000).
http://dx.doi.org/10.1109/55.823569
9.
9.R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater. 5, 222 (2006).
http://dx.doi.org/10.1038/nmat1590
10.
10.R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, Science 287, 839 (2000).
http://dx.doi.org/10.1126/science.287.5454.839
11.
11.S.-C. Wang, J.-C. Lou, B.-L. Liou, R.-X. Lin, and C.-F. Yeh, J. Electrochem. Soc. 152, G50 (2005).
http://dx.doi.org/10.1149/1.1829417
12.
12.Z. Rang, M. I. Nathan, P. P. Ruden, R. Chesterfield, and C. D. Frisbie, Appl. Phys. Lett. 85, 5760 (2004).
http://dx.doi.org/10.1063/1.1829388
13.
13.Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, M. I. Nathan, R. J. Chesterfield, and C. D. Frisbie, Appl. Phys. Lett. 79, 2731 (2001).
http://dx.doi.org/10.1063/1.1410878
14.
14.Z. Rang, M. I. Nathan, P. P. Ruden, V. Podzorov, M. E. Gershenson, C. R. Newman, and C. D. Frisbie, Appl. Phys. Lett. 86, 123501 (2005).
http://dx.doi.org/10.1063/1.1875761
15.
15.M. Oehzelt, K. Weinmeier, G. Heimel, P. Puschnig, R. Resel, C. Ambrosch-Draxl, F. Porsch, and A. Nakayama, High Press. Res. 22, 343 (2002).
http://dx.doi.org/10.1080/08957950212776
16.
16.P. Puschnig, G. Heimel, K. Weinmeier, R. Resel, and C. Ambrosch-Draxl, High Press. Res. 22, 105 (2002).
http://dx.doi.org/10.1080/08957950211353
17.
17.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
18.
18.Z. Bao, A. Dobabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
http://dx.doi.org/10.1063/1.117834
19.
19.A. M. Pivovar, J. E. Curtis, J. B. Leao, R. J. Chesterfield, and C. D. Frisbie, Chem. Phys. 325, 138 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.01.041
20.
20.E. L. Granstrom and C. D. Frisbie, J. Phys. Chem. B 103, 8842 (1999).
http://dx.doi.org/10.1021/jp991460l
21.
21.A. Dodabalapur, L. Torsi, and H. E. Katz, Science 14, 270 (1995).
http://dx.doi.org/10.1126/science.268.5208.270
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/1/10.1063/1.2830330
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

curves measured over the pressure range. The pressure increasing and pressure decreasing curves nearly coincide.

Image of FIG. 2.

Click to view

FIG. 2.

Drain currents measured at and vs pressure. When allowed to relax, the retrace is satisfactory. The curve peaks are around .

Image of FIG. 3.

Click to view

FIG. 3.

Linear mobility extracted from the transfer curves vs pressure.

Image of FIG. 4.

Click to view

FIG. 4.

Threshold voltage extrapolated from the transfer curves vs pressure.

Loading

Article metrics loading...

/content/aip/journal/apl/92/1/10.1063/1.2830330
2008-01-07
2014-04-24

Abstract

Poly(3-hexylthiophene) thin-film transistors are subjected to hydrostaticpressure up to . The charge carrier mobility and threshold voltage are extracted from curves. These parameters change linearly with pressure and retrace upon gradual pressure release. The mobility increases from , and the threshold voltage falls from over the full pressure range. As a result, the current rises with increasing pressure up to and then falls as pressure is increased further. The increase in the mobility is attributed to enhanced -orbital overlap under compression. The change in threshold voltage is interpreted as a modulation of trapped charge density.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/1/1.2830330.html;jsessionid=4o6gg74r2peuc.x-aip-live-06?itemId=/content/aip/journal/apl/92/1/10.1063/1.2830330&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hydrostatic pressure effects on poly(3-hexylthiophene) thin film transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/1/10.1063/1.2830330
10.1063/1.2830330
SEARCH_EXPAND_ITEM