1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
4.8% efficient poly(3-hexylthiophene)-fullerene derivative (1:0.8) bulk heterojunction photovoltaic devices with plasma treated /indium tin oxide anode modification
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/1/10.1063/1.2830619
1.
1.W. Ma, C. Yang, X. Gong, K. H. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
2.
2.Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, Nat. Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
3.
3.J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2001).
http://dx.doi.org/10.1063/1.1713036
4.
4.K. Schulze, B. Maennig, K. Leo, Y. Tomita, C. May, J. Hüpkes, E. Brier, E. Reinold, and P. Bäuerle, Appl. Phys. Lett. 91, 073521 (2007).
http://dx.doi.org/10.1063/1.2771050
5.
5.F. Yang and S. R. Forrest, Adv. Mater. (Weinheim, Ger.) 18, 2018 (2006).
http://dx.doi.org/10.1002/adma.200600797
6.
6.N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, M. Brumbach, B. Kippelen, B. Domercq, and S. Yoo, Thin Solid Films 445, 342 (2003).
http://dx.doi.org/10.1016/j.tsf.2003.08.067
7.
7.Z. R. Hong, C. J. Liang, X. Y. Sun, and X. T. Zeng, J. Appl. Phys. 100, 093711 (2006).
http://dx.doi.org/10.1063/1.2372574
8.
8.F. L. Zhang, A. Gadisa, O. Inganäs, M. Svensson, and M. R. Andersson, Appl. Phys. Lett. 84, 3906 (2004).
http://dx.doi.org/10.1063/1.1739279
9.
9.C. Ko, Y. Lin, F. Chen, and C. Chu, Appl. Phys. Lett. 90, 063509 (2007).
http://dx.doi.org/10.1063/1.2437703
10.
10.V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
11.
11.P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
12.
12.F. Zhang, M. Ceder, and O. Inganäs, Adv. Mater. (Weinheim, Ger.) 19, 1835 (2007).
http://dx.doi.org/10.1002/adma.200602597
13.
13.R. A. Hatton, M. R. Willis, M. A. Chesters, F. J. M. Rutten, and D. Briggs, J. Mater. Chem. 13, 38 (2003).
http://dx.doi.org/10.1039/b208169p
14.
14.Y. Shen, D. B. Jacobs, G. G. Malliaras, G. Koley, M. G. Spencer, and A. Ioannidis, Adv. Mater. (Weinheim, Ger.) 13, 1234 (2001).
http://dx.doi.org/10.1002/1521-4095(200108)13:16<1234::AID-ADMA1234>3.3.CO;2-I
15.
15.S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, Adv. Funct. Mater. 16, 95 (2006).
http://dx.doi.org/10.1002/adfm.200500207
16.
16.P. Ravirajan, S. A. Haque, J. R. Durrant, D. Poplavskyy, D. D. C. Bradley, and J. Nelson, J. Appl. Phys. 95, 1473 (2004).
http://dx.doi.org/10.1063/1.1638614
17.
17.J. Nelson, J. Kirkpatrick, and P. Ravirajan, Phys. Rev. B 69, 035337 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.035337
18.
18.V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
http://dx.doi.org/10.1002/adfm.200600489
19.
19.C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11, 374 (2001).
http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
20.
20.C.-W. Chen, P.-Y. Hsieh, H.-H. Chiang, C.-L. Lin, H.-M. Wu, and C.-C. Wu, Appl. Phys. Lett. 83, 5127 (2003).
http://dx.doi.org/10.1063/1.1635076
21.
21.H. W. Choi, S. Y. Kim, K.-B. Kim, Y.-H. Tak, and J.-N. Lee, Appl. Phys. Lett. 86, 012104 (2005).
http://dx.doi.org/10.1063/1.1846149
22.
22.J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, J.-W. Kang, J.-J. Kim, and M.-S. Yi, Appl. Phys. Lett. 90, 163516 (2007).
http://dx.doi.org/10.1063/1.2719153
23.
23.U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, Thin Solid Films 429, 129 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00064-6
24.
24.V. D. Mihailetchi, L. J. A. Koster, and P. W. M. Blom, Appl. Phys. Lett. 85, 970 (2004).
http://dx.doi.org/10.1063/1.1782252
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/1/10.1063/1.2830619
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) characteristics of polymer-fullerene bulk heterojunction photovoltaic devices under AM 1.5G filtered spectral illumination at an incident intensity of . (b) The corresponding characteristics in darkness.

Image of FIG. 2.

Click to view

FIG. 2.

Optical transmittance of the modified ITO anode with respect to the AM1.5G spectra. The inset shows the absorption of the P3HT:PCBM (1:0.8) blended film after annealing for .

Image of FIG. 3.

Click to view

FIG. 3.

Forward biased characteristics of both polymer-fullerene bulk heterojunction PV cells under darkness. The inset is the proposed energy level diagram indicating the interfacial energy barrier created by the treatment.

Loading

Article metrics loading...

/content/aip/journal/apl/92/1/10.1063/1.2830619
2008-01-07
2014-04-20

Abstract

We report here an improved efficiency, up to 4.8% with a high fill factor of under AM 1.5G spectral illumination and intensity, for poly(3-hexylthiophene) and [6,6]-phenyl butyric acid methyl ester bulk heterojunction photovoltaic (PV) devices with a 1:0.8 weight ratio using surface modifications to the indium tin oxide (ITO) anodes through plasma oxidized silver. Here, an enhanced short-circuit current density was achieved without significant loss in the open-circuit voltage nor the fill factor , leading to an efficiency jump from 4.4% in the control devices to 4.8% with the surface modified ITO anode. The enhanced short-circuit density is attributed to an interface energy step between the ITO and the polymer hole transporting layer. It has been theorized that the introduction of an interface energy step could alter the charge collection efficiency, resulting in an improved overall efficiency in PV devices. In our study, the current density–voltage characteristics under darkness clearly show an increased current density, especially under forward bias, for the anode treated cell, suggesting the presence of an interface energy step between the ITO and the hole transporting layer with surface modified ITO anodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/1/1.2830619.html;jsessionid=1wd2gdmwgpa6j.x-aip-live-06?itemId=/content/aip/journal/apl/92/1/10.1063/1.2830619&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: 4.8% efficient poly(3-hexylthiophene)-fullerene derivative (1:0.8) bulk heterojunction photovoltaic devices with plasma treated AgOx/indium tin oxide anode modification
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/1/10.1063/1.2830619
10.1063/1.2830619
SEARCH_EXPAND_ITEM