1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/1/10.1063/1.2830695
1.
1.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
2.
2.S. Guenes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. (Washington, D.C.) 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
3.
3.A. P. Smith, R. R. Smith, B. E. Taylor, and M. F. Durstock, Chem. Mater. 16, 4687 (2004).
http://dx.doi.org/10.1021/cm049447n
4.
4.H. J. Snaith, A. C. Arias, A. C. Morteani, C. Silva, and R. H. Friend, Nano Lett. 2, 1353 (2002).
http://dx.doi.org/10.1021/nl0257418
5.
5.X. Yang, J. Loos, S. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
http://dx.doi.org/10.1021/nl048120i
6.
6.H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004).
http://dx.doi.org/10.1002/adfm.200305026
7.
7.C. R. McNeill, B. Watts, L. Thomsen, W. J. Belcher, N. C. Greenham, and P. C. Dastoor, Nano Lett. 6, 1202 (2006).
http://dx.doi.org/10.1021/nl060583w
8.
8.T. Glatzel, H. Hoppe, N. S. Sariciftci, M. Ch. Lux-Steiner, and M. Komiyama, Jpn. J. Appl. Phys., Part 1 44, 5370 (2005).
http://dx.doi.org/10.1143/JJAP.44.5370
9.
9.C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, Nano Lett. 4, 2503 (2004).
http://dx.doi.org/10.1021/nl048590c
10.
10.M. C. Hersam, A. C. F. Hoole, S. J. O’Shea, and M. E. Welland, Appl. Phys. Lett. 72, 915 (1998).
http://dx.doi.org/10.1063/1.120872
11.
11.H.-N. Lin, H.-L. Lin, S.-S. Wang, L.-S. Yu, G.-Y. Perng, S.-A. Chen, and S.-H. Chen, Appl. Phys. Lett. 81, 2572 (2002).
http://dx.doi.org/10.1063/1.1509464
12.
12.O. Douhéret, L. Lutsen, A. Swinnen, M. Breselge, K. Vandewal, L. Goris, and J. Manca, Appl. Phys. Lett. 89, 032107 (2006).
http://dx.doi.org/10.1063/1.2227846
13.
13.A. Alexeev, J. Loos, and M. M. Koetse, Ultramicroscopy 106, 191 (2006).
http://dx.doi.org/10.1016/j.ultramic.2005.07.003
14.
14.H. R. Moutinho, R. G. Dhere, C. S. Jiang, M. M. Al-Jassim, and L. L. Kazmerski, Thin Solid Films 514, 150 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.03.003
15.
15.D. C. Coffey and D. S. Ginger, Nat. Mater. 5, 735 (2006).
http://dx.doi.org/10.1038/nmat1712
16.
16.D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Nano Lett. 7, 738 (2007).
http://dx.doi.org/10.1021/nl062989e
17.
17.L. S. C. Pingree, M. M. Kern, B. J. Scott, T. J. Marks, and M. C. Hersam, Appl. Phys. Lett. 85, 344 (2004).
http://dx.doi.org/10.1063/1.1765206
18.
18.L. S. C. Pingree, M. T. Russell, B. J. Scott, T. J. Marks, and M. C. Hersam, Org. Electron. 8, 465 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.02.008
19.
19.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
20.
20.V. D. Mihailetchi, H. Xie, B. de Boer, L. M. Popescu, J. C. Hummelen, P. W. M. Blom, and L. J. A. Koster, Appl. Phys. Lett. 89, 012107 (2006).
http://dx.doi.org/10.1063/1.2212058
21.
21.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
22.
22.Y.-H. Liau, N. F. Scherer, and K. Rhodes, J. Phys. Chem. B 105, 3282 (2001).
http://dx.doi.org/10.1021/jp002831x
23.
23.H.-N. Lin, S.-Y. Chen, G.-Y. Perng, and S.-A. Chen, J. Appl. Phys. 89, 3976 (2001).
http://dx.doi.org/10.1063/1.1353558
24.
24.J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, and R. L. Moon, J. Appl. Phys. 80, 6002 (1996).
http://dx.doi.org/10.1063/1.363598
25.
25.H. Aziz, Z. Popovic, C. P. Tripp, N.-X. Hu, A.-M. Hor, and G. Xu, Appl. Phys. Lett. 72, 2642 (1998).
http://dx.doi.org/10.1063/1.121442
26.
26.M. Kemerink, S. Timpanaro, M. M. De Kok, E. A. Meulenkamp, and F. J. Touwslager, J. Phys. Chem. B 108, 18820 (2004).
http://dx.doi.org/10.1021/jp0464674
27.
27.M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, and A. Gombert, Sol. Energy Mater. Sol. Cells 91, 390 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.10.020
28.
28.K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy Mater. Sol. Cells 90, 3520 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.041
29.
29.Rashmi, A. K. Kapoor, U. Kumar, V. R. Balakrishnan, and P. K. Basu, Pramana, J. Phys. 68, 489 (2007).
http://dx.doi.org/10.1007/s12043-007-0052-2
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/1/10.1063/1.2830695
Loading
/content/aip/journal/apl/92/1/10.1063/1.2830695
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/1/10.1063/1.2830695
2008-01-04
2014-08-30

Abstract

A conductive atomic force microscopy (cAFM) technique, atomic force photovoltaicmicroscopy (AFPM), has been developed to characterize spatially localized inhomogeneities in organic photovoltaic (OPV) devices. In AFPM, a biased cAFM probe is raster scanned over an array of illuminated solar cells, simultaneously generating topographic and photocurrent maps. As proof of principle, AFPM is used to characterize poly(3-hexylthiophene):[6,6]-phenyl--butyric acid methyl ester OPVs, revealing substantial device to device and temporal variations in the short-circuit current. The flexibility of AFPM suggests applicability to nanoscale characterization of a wide range of optoelectronically active materials and devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/1/1.2830695.html;jsessionid=5edb60cw76bn0.x-aip-live-06?itemId=/content/aip/journal/apl/92/1/10.1063/1.2830695&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/1/10.1063/1.2830695
10.1063/1.2830695
SEARCH_EXPAND_ITEM