1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Control of the nanoscale crystallinity and phase separation in polymer solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/10/10.1063/1.2891884
1.
1.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
2.
2.Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, Appl. Phys. Lett. 86, 063502 (2005).
http://dx.doi.org/10.1063/1.1861123
3.
3.F. Padinger, R. S. Rittberger, and NS. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
http://dx.doi.org/10.1002/adfm.200390011
4.
4.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
5.
5.G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704 (2005).
http://dx.doi.org/10.1063/1.2008386
6.
6.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
7.
7.M. Nakazono, T. Kawai, and K. Yoshino, Chem. Mater. 6, 864 (1994).
http://dx.doi.org/10.1021/cm00042a027
8.
8.P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81, 3885 (2002).
http://dx.doi.org/10.1063/1.1521244
9.
9.G. Li, C.-W. Chu, V. Shrotriyz, J. Haung, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
10.
10.J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 87, 112105 (2005).
http://dx.doi.org/10.1063/1.2045554
11.
11.V. Shrotriya, E. H. Wu, G. Li, Y. Yao, and Y. Yang, Appl. Phys. Lett. 88, 064104 (2006).
http://dx.doi.org/10.1063/1.2172741
12.
12.K. Kawano, N. Ito, T. Nishimori, and J. Sakai, Appl. Phys. Lett. 88, 073514 (2006).
http://dx.doi.org/10.1063/1.2177633
13.
13.M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Angew. Chem. 42, 3371 (2003).
http://dx.doi.org/10.1002/anie.200351647
14.
14.H. Yang, S. W. LeFevre, C. Y. Ryu, and Z. Bao, Appl. Phys. Lett. 90, 172116 (2007).
http://dx.doi.org/10.1063/1.2734387
15.
15.V. Shrotriya, G. Li, Y. Yao, Y. Yang, T. Moriarty, and K. Emery, Adv. Funct. Mater. 16, 2016 (2006).
http://dx.doi.org/10.1002/adfm.200600489
16.
16.G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
http://dx.doi.org/10.1002/adfm.200600624
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2891884
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) 2D GIXRD patterns of four RR P3HT/[C70]PCBM (1:1 ratio) films [(1) DCB, ; (2) DCB, ; (3) CB, ; (4) CB, , ]. (b) 1D out-of-plane x-ray profiles. (c) Azimuthal scan profiles obtained at peak positions. The inset in (c) represents the correlation between the measured azimuthal angle and molecular orientation of RR P3HT. (d) Tapping mode AFM phase image of film 4.

Image of FIG. 2.

Click to view

FIG. 2.

(a) UV-visible spectra for films of P3HT:[70]PCBM (in 1:1 wt/wt ratio), for both slow grown and fast grown films from TCB as solvent, before (dash line) and after (solid line) annealing. The films were spun cast at for (film thickness ) and the annealing was done at for inside glove box. (b) IPCE of RR-P3HT:[70]PCBM solar cells with two types of active layers: fast grown and slow grown.

Image of FIG. 3.

Click to view

FIG. 3.

(a) characteristics of the fast (top) and slow (bottom) grown devices under AM 1.5G illumination with intensity of . (b) (triangles), FF (squares), and (circles), as a function of the incident power density for the slow grown devices with annealing at .

Tables

Generic image for table

Click to view

Table I.

Summary of device performance of ITO/PEDOT:PSS/P3HT:PCBM (film thickness )/ polymer solar cells with different fabrication conditions.

Loading

Article metrics loading...

/content/aip/journal/apl/92/10/10.1063/1.2891884
2008-03-11
2014-04-18

Abstract

Grazing-incidence x-ray diffraction and atomic force microscopy were performed on bulk heterojunction regioregular poly(3-hexylthiophene) (RR-P3HT) [6,6]-phenyl--butyric acid methyl esters spin-cast films with different film processing conditions to correlate the crystalline nanostructure of P3HT with the corresponding solar cell performance. The increase in long wavelength absorption for solventannealedfilms is related to highly conjugated crystal structure of RR-P3HT phase-separated in the active layer. Upon thermal annealing, the solventannealed-thick device shows high solar cell performance with fill factor up to 73% and power conversion efficiency of 3.80%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/10/1.2891884.html;jsessionid=evudc8d15rq9.x-aip-live-01?itemId=/content/aip/journal/apl/92/10/10.1063/1.2891884&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Control of the nanoscale crystallinity and phase separation in polymer solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2891884
10.1063/1.2891884
SEARCH_EXPAND_ITEM