1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Carrier trapping and scattering in amorphous organic hole transporter
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/10/10.1063/1.2894013
1.
1.L. S. Hung and C. H. Chen, Mater. Sci. Eng., R. 39, 143 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00093-1
2.
2.P. W. M. Blom and M. C. J. M. Vissenberg, Mater. Sci. Eng., R. 27, 53 (2000).
http://dx.doi.org/10.1016/S0927-796X(00)00009-7
3.
3.C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
http://dx.doi.org/10.1063/1.343409
4.
4.S. C. Tse, K. C. Kwok, and S. K. So, Appl. Phys. Lett. 89, 262102 (2006).
http://dx.doi.org/10.1063/1.2420785
5.
5.E. W. Forsythe, M. A. Abkowitz, Y. Gao, and C. W. Tang, J. Vac. Sci. Technol. A 18, 1869 (2000).
http://dx.doi.org/10.1116/1.582438
6.
6.H. H. Fong and S. K. So, J. Appl. Phys. 100, 094502 (2006).
http://dx.doi.org/10.1063/1.2372388
7.
7.H. H. Fong and S. K. So, J. Appl. Phys. 98, 023711 (2005).
http://dx.doi.org/10.1063/1.1990258
8.
8.J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
http://dx.doi.org/10.1063/1.118664
9.
9.S. C. Tse, S. W. Tsang, and S. K. So, J. Appl. Phys. 100, 063708 (2006).
http://dx.doi.org/10.1063/1.2348640
10.
10.Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett. 75, 1682 (1999).
http://dx.doi.org/10.1063/1.124790
11.
11.J. Lam, T. C. Gorjanc, Y. Tao, and M. D’lorio, J. Vac. Sci. Technol. A 18, 593 (2000).
http://dx.doi.org/10.1116/1.582232
12.
12.J. Kalinowski, M. Cocchi, P. D. Marco, W. Stampor, G. Giro, and V. Fattori, J. Phys. D 33, 2379 (2000).
http://dx.doi.org/10.1088/0022-3727/33/19/306
13.
13.R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, M. E. Thompson, J. Brooks, Y. J. Tung, B. W. D’Andrade, M. S. Weaver, R. C. Kwong, and J. J. Brown., Appl. Phys. Lett. 87, 243507 (2005).
http://dx.doi.org/10.1063/1.2143128
14.
14.G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett. 72, 2138 (1998).
http://dx.doi.org/10.1063/1.121301
15.
15.A. T. Davidson, J. Chem. Phys. 77, 168 (1982).
http://dx.doi.org/10.1063/1.443636
16.
16.P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Imaging Systems (Dekker, New York, 1993), Chap. 9.
17.
17.E. W. Forsythe, M. A. Abkowitz, Y. Gao, and C. W. Tang, J. Vac. Sci. Technol. A 18, 1869 (2000).
http://dx.doi.org/10.1116/1.582438
18.
18.H. H. Fong, K. C. Lun, and S. K. So, Chem. Phys. Lett. 353, 407 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00053-2
19.
19.H. Bässler, Phys. Status Solidi B 175, 15 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2894013
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Typical time of flight transients for (i) pristine NPB, (ii) , (iii) NPB:BCP, (iv) NPB:DCM1, (v) NPB:DCM2, and (vi) NPB:CuPc under an applied field of at room temperature, while NPB:CuPc transient was taken at . In (iv) and (v), the insets show the log-log plots. The chemical structures of the materials used in this study and the film thicknesses are also shown.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Hole mobilities of NPB and doped NPB at room temperature. (b) Hole mobilities of (i) pristine NPB, (ii) NPB: DCM1, (iii) NPB: DCM2, (iv) , (v) NPB:BCP, and (vi) NPB:CuPc vs the squart root of the applied electric field at different temperatures. The straight lines are the best line-fits to the data.

Image of FIG. 3.

Click to view

FIG. 3.

(a)–(e) The zero field mobilities vs for NPB, NPB:DCM1, NPB:DCM2, , and NPB:BCP; (f)–(j), the corresponding vs . The energetic, positional disorders, and the high temperature limit of mobility can be extracted from these plots. The straight lines are the best line-fits to the data.

Tables

Generic image for table

Click to view

Table I.

Hole transport parameters of pristine and doped NPB.

Loading

Article metrics loading...

/content/aip/journal/apl/92/10/10.1063/1.2894013
2008-03-14
2014-04-23

Abstract

The effects of dopants on the hole transporting properties of -diphenyl--bis(1-naphthyl)(1,1’-biphenyl)-4,4’diamine (NPB) have been studied by time of flight. Five dopants:copper phthalocyanine (CuPc), 4-(dicyanomethylene)-2-methyl-6-(-dimethylaminostyrle)-4-pyran (DCM1), 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetra-hydro-1,5-benzo[ij] quinolizin-8-yl)vinyl]-4-pyran (DCM2), 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole , and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) are used in this study. The dopant molecules behave like hole traps or scatterers. Their detailed behaviors are determined by their highest occupied molecular orbital relative to that of NPB. Generally, traps are found to induce significant reduction in hole mobility while there is a slight reduction for scattering. Two different underlying charge transport mechanisms are proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/10/1.2894013.html;jsessionid=4lua082bco9t.x-aip-live-06?itemId=/content/aip/journal/apl/92/10/10.1063/1.2894013&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carrier trapping and scattering in amorphous organic hole transporter
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2894013
10.1063/1.2894013
SEARCH_EXPAND_ITEM