1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Gold nanoparticle-pentacene memory transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/10/10.1063/1.2896602
1.
1.L. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002).
http://dx.doi.org/10.1063/1.1473234
2.
2.L. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, Appl. Phys. Lett. 82, 1419 (2003).
http://dx.doi.org/10.1063/1.1556555
3.
3.A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, J. Appl. Phys. 94, 6988 (2003).
http://dx.doi.org/10.1063/1.1622990
4.
4.L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004).
http://dx.doi.org/10.1063/1.1643547
5.
5.D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, and G. Haas, Appl. Phys. Lett. 85, 5763 (2004).
http://dx.doi.org/10.1063/1.1829166
6.
6.Y. Yang, J. Ouyang, L. Ma, R. J.-H. Tseng, and C.-W. Chu, Adv. Funct. Mater. 16, 1001 (2006).
http://dx.doi.org/10.1002/adfm.200500429
7.
7.J. C. Scott and L. D. Bozano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
8.
8.J. He, J. Wu, and Y. Yang, J. Appl. Phys. 97, 064507 (2005).
http://dx.doi.org/10.1063/1.1866496
9.
9.M. Cölle, M. Büchel, and D. M. De Leeuw, Org. Electron. 7, 305 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.03.014
10.
10.F. L. E. Jakobsson, X. Crispin, M. Cölle, M. Büchel, D. M. De Leeuw, and M. Berggren, Org. Electron. 8, 559 (2007).
11.
11.H. X. He, D. Zhang, Q. G. Li, T. Zhu, S. F. Y. Li, and Z. F. Liu, Langmuir 16, 3846 (2000).
http://dx.doi.org/10.1021/la991356v
12.
12.T. Sato, H. Ahmed, D. Brown, and B. F. G. Johnson, J. Appl. Phys. 82, 696 (1997).
http://dx.doi.org/10.1063/1.365600
13.
13.M.-C. Daniel and D. Astruc, Chem. Rev. (Washington, D.C.) 104, 293 (2004).
http://dx.doi.org/10.1021/cr030698+
14.
14.D. F. Siqueira Petri, G. Wenz, P. Schunk, and T. Schimmel, Langmuir 15, 4520 (1999).
http://dx.doi.org/10.1021/la981379u
15.
15.G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, Appl. Phys. Lett. 87, 243512 (2005).
http://dx.doi.org/10.1063/1.2146059
16.
16.W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, Appl. Phys. Lett. 90, 042906 (2007).
http://dx.doi.org/10.1063/1.2435598
17.
17.S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004).
http://dx.doi.org/10.1038/nmat1105
18.
18.E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2896602
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) SEM images of sample B after deposition and encapsulation of Au-NP and (b) of sample C after deposition of nanoparticles. Deposition of nanoparticles on the extent of respective surfaces is similar to the presented images. On both images, light areas represent Au nanoparticles and the darker background is the oxide substrate.

Image of FIG. 2.

Click to view

FIG. 2.

(at ) for (a) device A and (b) device B and (c) (at ) characteristics for device B before (◻) and after (▵) writing (at , ) and (○) erasing (at , ) operations. Solid lines on the curves are linear extrapolations to determine the threshold voltage .

Image of FIG. 3.

Click to view

FIG. 3.

Charge relaxations in devices B and C after writing at , . Closed symbols are the initial on-current before writing. The full lines are fits with two exponentials.

Tables

Generic image for table

Click to view

Table I.

Threshold voltage shift, density of stored charges, stored charge per NP, and on/off drain current ratios (NR stands for nonrelevant). Min/max values are given, except for and charges/NP, calculated from the maximum .

Generic image for table

Click to view

Table II.

Time constants and retention times measured on devices A, B, and C. Min/max values are given (NR stands for nonrelevant).

Loading

Article metrics loading...

/content/aip/journal/apl/92/10/10.1063/1.2896602
2008-03-14
2014-04-23

Abstract

We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold(Au)nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift and on/off drain current ratio of are obtained. The hole field-effect mobility of the transistor is similar in the on and off states (less than a factor of 2). Charge retention times up to are observed. The memory effect is mainly attributed to the Aunanoparticles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/10/1.2896602.html;jsessionid=3gom4rq1x1i5j.x-aip-live-03?itemId=/content/aip/journal/apl/92/10/10.1063/1.2896602&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Gold nanoparticle-pentacene memory transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2896602
10.1063/1.2896602
SEARCH_EXPAND_ITEM