1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/10/10.1063/1.2898203
1.
1.G. Malliaras and R. Friend, Phys. Today 58, 53 (2005).
2.
2.V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003).
http://dx.doi.org/10.1063/1.1560869
3.
3.J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, J. Appl. Phys. 94, 5800 (2003).
http://dx.doi.org/10.1063/1.1618919
4.
4.R. W. I. de Boer, T. M. Klapwijk, and A. F. Morpurgo, Appl. Phys. Lett. 83, 4345 (2003).
http://dx.doi.org/10.1063/1.1629144
5.
5.V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
6.
6.J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, Phys. Rev. Lett. 98, 196804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196804
7.
7.C. Reese, W.-J. Chung, M.-M. Ling, M. Roberts, and Z. Bao, Appl. Phys. Lett. 89, 202108 (2006).
http://dx.doi.org/10.1063/1.2388151
8.
8.M. Uno, Y. Tominari, and J. Takeya (unpublished).
9.
9.J. Takeya, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, Jpn. J. Appl. Phys., Part 2 44, L1393 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1393
10.
10.V. Podzorov, E. Menard, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226601
11.
11.J. Kraitchman, J. Appl. Phys. 38, 4323 (1967).
http://dx.doi.org/10.1063/1.1709122
12.
12.M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature (London) 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
13.
13.M. J. Panzer, C. R. Newman, and C. D. Frisbie, Appl. Phys. Lett. 86, 103503 (2005).
http://dx.doi.org/10.1063/1.1880434
14.
14.M. J. Panzer and C. D. Frisbie, Appl. Phys. Lett. 88, 203504 (2006).
http://dx.doi.org/10.1063/1.2204846
15.
15.J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukagoshi, S. Ikehata, and Y. Aoyagi, Appl. Phys. Lett. 88, 112102 (2006).
http://dx.doi.org/10.1063/1.2186513
16.
16.E. Said, X. Crispin, L. Herlogsson, S. Elhag, N. D. Robinson, and M. Berggren, Appl. Phys. Lett. 89, 143507 (2006).
http://dx.doi.org/10.1063/1.2358315
17.
17.H. Shimotani, H. Asanuma, J. Takeya, and Y. Iwasa, Appl. Phys. Lett. 89, 203501 (2006).
http://dx.doi.org/10.1063/1.2387884
18.
18.M. J. Panzer and C. D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007).
http://dx.doi.org/10.1021/ja0708767
19.
19.J. Lee, M. J. Panzer, Y. He, T. P. Lodge, and C. D. Frisbie, J. Am. Chem. Soc. 129, 4532 (2007).
http://dx.doi.org/10.1021/ja070875e
20.
20.R. Misra, M. McCarthy, and A. F. Hebard, Appl. Phys. Lett. 90, 052905 (2007).
http://dx.doi.org/10.1063/1.2437663
21.
21.M. A. B. H. Susan, T. Kaneko, A. Noda, and M. Watanabe, J. Am. Chem. Soc. 127, 4976 (2005).
http://dx.doi.org/10.1021/ja045155b
22.
22.S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, and N. Terada, J. Phys. Chem. B 110, 10228 (2006).
http://dx.doi.org/10.1021/jp0620872
23.
23.S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and N. Terada, J. Electrochem, Society 154, A173 (2007).
24.
24.H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys. 92, 5259 (2002).
http://dx.doi.org/10.1063/1.1511826
25.
25.A. F. Stassen, R. W. I. de Boer, N. N. Iosad, and A. F. Morpurgo, Appl. Phys. Lett. 85, 3899 (2004).
http://dx.doi.org/10.1063/1.1812368
26.
26.I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Nat. Mater. 5, 982 (2006).
http://dx.doi.org/10.1038/nmat1774
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2898203
Loading
/content/aip/journal/apl/92/10/10.1063/1.2898203
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/10/10.1063/1.2898203
2008-03-13
2014-10-22

Abstract

We report high-mobility rubrene single-crystalfield-effect transistors with ionic-liquid (IL) electrolytes used for gate dielectric layers. As the result of fast ionic diffusion to form electric double layers, their capacitances remain more than even at . With high carrier mobility of in the rubrene crystal, pronounced current amplification is achieved at the gate voltage of only , which is two orders of magnitude smaller than that necessary for organic thin-film transistors with dielectric gate insulators. The results demonstrate that the IL/organic semiconductor interfaces are suited to realize low-power and fast-switching field-effect transistors without sacrificing carrier mobility in forming the solid/liquid interfaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/10/1.2898203.html;jsessionid=cd8e78oo37ad.x-aip-live-03?itemId=/content/aip/journal/apl/92/10/10.1063/1.2898203&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/10/10.1063/1.2898203
10.1063/1.2898203
SEARCH_EXPAND_ITEM