1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantitative analysis of electronic transport through weakly coupled metal/organic interfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/13/10.1063/1.2904629
1.
1.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
2.
2.J. Campbell Scott, J. Vac. Sci. Technol. A 21, 521 (2003).
http://dx.doi.org/10.1116/1.1559919
3.
3.A. Molinari, I. Gutiérrez, I. N. Hulea, S. Russo, and A. F. Morpurgo, Appl. Phys. Lett. 90, 212103 (2007).
http://dx.doi.org/10.1063/1.2741411
4.
4.R. W. I. de Boer, T. M. Klapwijk, and A. F. Morpurgo, Appl. Phys. Lett. 83, 4345 (2003);
http://dx.doi.org/10.1063/1.1629144
4.R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004).
http://dx.doi.org/10.1002/pssa.200404336
5.
5.T. Nishikawa, S.-I. Kobayashi, T. Nakanowatari, T. Mitani, T. Shimoda, Y. Kubozono, G. Yamamoto, H. Ishii, M. Niwano, and I. Iwasa, J. Appl. Phys. 97, 104509 (2005).
http://dx.doi.org/10.1063/1.1903109
6.
6.T. Matsushima, K. Goushi, and C. Adachi, Chem. Phys. Lett. 435, 327 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.01.010
7.
7.I. N. Hulea, S. Russo, A. Molinari, and A. F. Morpurgo, Appl. Phys. Lett. 88, 113512 (2006).
http://dx.doi.org/10.1063/1.2185632
8.
8.C. Y. Wu, J. Appl. Phys. 53, 5947 (1982).
http://dx.doi.org/10.1063/1.331384
9.
9.A. M. Cowley and S. M. Sze, J. Appl. Phys. 36, 3212 (1965).
http://dx.doi.org/10.1063/1.1702952
10.
10.J. Bardeen, Phys. Rev. 71, 717 (1947).
http://dx.doi.org/10.1103/PhysRev.71.717
11.
11.E. H. Rhoderick, Metal-Semiconductor Contacts (Clarendon, Oxford, 1980).
12.
12.J. M. Andrews and M. P. Lepselter, Solid-State Electron. 13, 1011 (1969).
http://dx.doi.org/10.1016/0038-1101(70)90098-5
13.
13.T. Takenobu (unpublished).
14.
14.W. Mönch, Surf. Sci. 299/300, 928 (1994).
15.
15.Z. Q. Li, V. Podzorov, N. Sai, M. C. Martin, M. E. Gershenson, M. di Ventra, and D. N. Basov, Phys. Rev. Lett. 99, 016403 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.016403
16.
16.H. Vázquez, R. Oszwaldowsky, P. Pou, J. Ortega, R. Pérez, F. Flores, and A. Kahn, Europhys. Lett. 65, 802 (2004).
http://dx.doi.org/10.1209/epl/i2003-10131-2
17.
17.A. Wan, I. Hawang, F. Amy, and A. Kahn, Org. Electron. 6, 47 (2005).
http://dx.doi.org/10.1016/j.orgel.2005.02.003
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/13/10.1063/1.2904629
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

curves measured at room temperature on a short channel FET for three different gate voltages , showing the characteristic behavior of contact-dominated devices (i.e., gate voltage independence and steep nonlinearity at low bias). The top left inset is a scheme of the metal/organic contact; the arrows indicate the current injection path from the metal to the channel, passing through the rubrene crystal. The bottom right inset shows the differential conductance normalized at the zero-bias value for 26 different samples, illustrating the reproducibility of the measurements.

Image of FIG. 2.

Click to view

FIG. 2.

characteristic of a contact-dominated device, measured at , for different temperatures. The inset shows the temperature dependence of the differential conductance (obtained by numerical differentiation of the curves) normalized to the value at and . In both graphs, the open symbols represent the experimental measurements and the continuous lines represent the theoretical values calculated using two Schottky diodes in series (shown in the scheme on the top right), as described in the text.

Image of FIG. 3.

Click to view

FIG. 3.

In (a), the measured activation energy (open dots) is compared to the calculations (continuous line). The inset shows the activation energy measured on several different devices on ( and ), illustrating the relatively small sample-to-sample variation. In (b), the linearity of the plot of vs indicates that the thermally activated behavior is experimentally well obeyed for different values of bias voltage (the lines are guides to the eye).

Loading

Article metrics loading...

/content/aip/journal/apl/92/13/10.1063/1.2904629
2008-03-31
2014-04-21

Abstract

Using single-crystal transistors, we have performed a systematic experimental study of electronic transport through oxidized copper/rubrene interfaces as a function of temperature and bias. We find that the measurements can be quantitatively reproduced in terms of the thermionic emission theory for Schottky diodes, if the effect of the bias-induced barrier lowering is included. Our analysis emphasizes the role of the coupling between metal and molecules, which in our devices is weak due to the presence of an oxide layer at the surface of the copper electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/13/1.2904629.html;jsessionid=a071m5q7rd6f8.x-aip-live-02?itemId=/content/aip/journal/apl/92/13/10.1063/1.2904629&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantitative analysis of electronic transport through weakly coupled metal/organic interfaces
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/13/10.1063/1.2904629
10.1063/1.2904629
SEARCH_EXPAND_ITEM