1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/92/14/10.1063/1.2904624
1.
1.E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, IEEE J. Solid-State Circuits 42, 84 (2007).
http://dx.doi.org/10.1109/JSSC.2006.886556
2.
2.G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B.P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, and D. M. de Leeuw, Nat. Mater. 3, 106 (2004).
http://dx.doi.org/10.1038/nmat1061
3.
3.C. F. Hill, Mullard Tech. Commun. 89, 239 (1967).
4.
4.S. De Vusser, J. Genoe, and P. Heremans, IEEE Trans. Electron Devices 53, 601 (2006).
5.
5.J. R. Hauser, IEEE Trans. Educ. 36, 363 (1993).
6.
6.S. Iba, T. Sekitani, Y. Kato, H. Kawaguchi, M. Takamiya, S. Takagi, T. Sakurai, and T. Someya, Appl. Phys. Lett. 87, 023509 (2005).
http://dx.doi.org/10.1063/1.1995958
7.
7.G. H. Gelinck, E. van Veenendaal, and R. Coehoorn, Appl. Phys. Lett. 87, 073508 (2005).
http://dx.doi.org/10.1063/1.2031933
8.
8.M. Morana, G. Bret, and C. Brabec, Appl. Phys. Lett. 87, 153511 (2005).
http://dx.doi.org/10.1063/1.2103403
9.
9.L. Chua, P. K. H. Ho, and R. H. Friend, Appl. Phys. Lett. 87, 253512 (2005).
http://dx.doi.org/10.1063/1.2149351
10.
10.E. Cantatore and E. J. Meijer, Proc. ESSCIRC 2003, 29.
11.
11.M. G. Buhler and T. W. Griswold, J. Electrochem. Soc. 83–1, 391 (1983).
12.
12.E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, and T. M. Klapwijk, J. Appl. Phys. 93, 4831 (2003).
http://dx.doi.org/10.1063/1.1559933
13.
13.K. Hizu, T. Sekitani, T. Someya, and J. Otsuki, Appl. Phys. Lett. 90, 093504 (2007).
http://dx.doi.org/10.1063/1.2709991
14.
14.M. Takamiya, T. Sekitani, Y. Kato, H. Kawaguchi, T. Someya, and T. Sakurai, IEEE J. Solid-State Circuits 42, 84 (2007).
http://dx.doi.org/10.1109/JSSC.2006.886556
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/14/10.1063/1.2904624
Loading
/content/aip/journal/apl/92/14/10.1063/1.2904624
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/14/10.1063/1.2904624
2008-04-08
2015-03-02

Abstract

Complex digital circuits reliably work when the noise margin of the logic gates is sufficiently high. For -type only inverters, the noise margin is typically about . To increase the noise margin, we fabricated inverters with dual gate transistors. The top gate is advantageously used to independently tune the threshold voltage. The shift can be quantitatively described by , where and are the top and bottom gate capacitances. We show that by adjusting the top gate biases, the noise margin of dual gate inverters can be significantly improved up to about .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/14/1.2904624.html;jsessionid=20v3vrdmmo9xm.x-aip-live-03?itemId=/content/aip/journal/apl/92/14/10.1063/1.2904624&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Increasing the noise margin in organic circuits using dual gate field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/14/10.1063/1.2904624
10.1063/1.2904624
SEARCH_EXPAND_ITEM