1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/15/10.1063/1.2907977
1.
1.A. Vassighi and M. Sachdev, Thermal and Power Management of Integrated Circuits (Springer, New York, 2006).
2.
2.S. Jin and H. Mavoori, J. Electron. Mater. 27, 1148 (1998).
http://dx.doi.org/10.1007/s11664-998-0063-x
3.
3.M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, and A. T. Johnson, Appl. Phys. Lett. 80, 2767 (2002);
http://dx.doi.org/10.1063/1.1469696
3.S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M. S. Strano, G. Siddons, M. Shim, and P. Keblinski, Nat. Mater. 2, 731 (2003).
http://dx.doi.org/10.1038/nmat996
4.
4.A. V. Sukhadolou, E. V. Ivakin, V. G. Ralchenko, A. V. Khomich, A. V. Vlasov, and A. F. Popovich, Diamond Relat. Mater. 14, 589 (2005).
http://dx.doi.org/10.1016/j.diamond.2004.12.002
5.
5.P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
6.
6.E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).
http://dx.doi.org/10.1021/nl052145f
7.
7.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
8.
8.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
9.
9.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
10.
10.F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007).
http://dx.doi.org/10.1126/science.1144359
11.
11.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, P. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
12.
12.I. Calizo, F. Miao, W. Bao, C. N. Lau, and A. A. Balandin, Appl. Phys. Lett. 91, 071913 (2007).
http://dx.doi.org/10.1063/1.2771379
13.
13.I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, Appl. Phys. Lett. 91, 201904 (2007).
http://dx.doi.org/10.1063/1.2805024
14.
14.I. Calizo, D. Teweldebrhan, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, J. Phys. C (unpublished).
15.
15.M. Kuball, S. Rajasingam, A. Sarua, M. J. Uren, T. Martin, B. T. Hughes, K. P. Hilton, and R. S. Balmer, Appl. Phys. Lett. 82, 124 (2003).
http://dx.doi.org/10.1063/1.1534935
16.
16.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
17.
17.I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Nano Lett. 7, 2645 (2007).
http://dx.doi.org/10.1021/nl071033g
18.
18.C. H. Yu, L. Shi, Z. Yao, D. Y. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).
http://dx.doi.org/10.1021/nl051044e
19.
19.H. Y. Chiu, V. V. Deshpande, H. W. C. Postma, C. N. Lau, C. Miko, L. Forro, and M. Bockrath, Phys. Rev. Lett. 95, 226101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226101
20.
20.P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, and E. W. Hill, Appl. Phys. Lett. 91, 063124 (2007).
http://dx.doi.org/10.1063/1.2768624
21.
21.M. C. Tobin, Laser Raman Spectroscopy (Wiley-Interscience, Toronto, 1971);
21.M. M. Sushchinskii, Raman Spectra of Molecules and Crystals (Nauka, Moscow, 1969).
22.
22.A. Pfrang and Th. Schimmel, Surf. Interface Anal. 36, 184 (2004).
http://dx.doi.org/10.1002/sia.1688
23.
23.S. Perichon, V. Lysenko, B. Remaki, and D. J. Barbier, J. Appl. Phys. 86, 4700 (1999).
http://dx.doi.org/10.1063/1.371424
24.
24.R. Tsu and J. G. Hernandez, Appl. Phys. Lett. 41, 1016 (1982).
http://dx.doi.org/10.1063/1.93394
25.
25.F. L. Galeener, Phys. Rev. B 19, 4292 (1979);
http://dx.doi.org/10.1103/PhysRevB.19.4292
25.A. E. Geissberger and F. L. Galeener, Phys. Rev. B 28, 3266 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.3266
26.
26.R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, Phys. Rev. Lett. 57, 747 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.747
27.
27.P. G. Klemens and D. F. Pedraza, Carbon 32, 735 (1994).
http://dx.doi.org/10.1016/0008-6223(94)90096-5
28.
28.R. Gaume, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, Appl. Phys. Lett. 83, 1355 (2003).
http://dx.doi.org/10.1063/1.1601676
29.
29.M. Hanfland, H. Besister, and K. Syassen, Phys. Rev. B 39, 12598 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12598
30.
30.S. Reich, H. Jantoljak, and C. Thomsen, Phys. Rev. B 61, 13389 (2000).
31.
31.N. A. Abdulaev, R. A. Suleimanov, M. A. Aldzhanov, and L. N. Alieva, Phys. Solid State 44, 1859 (2002);
http://dx.doi.org/10.1134/1.1514773
31.N. A. Abdulaev, Phys. Solid State 43, 727 (2001).
http://dx.doi.org/10.1134/1.1366002
32.
32.M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).
http://dx.doi.org/10.1080/000187300413184
33.
33.N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205214
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/15/10.1063/1.2907977
Loading
/content/aip/journal/apl/92/15/10.1063/1.2907977
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/15/10.1063/1.2907977
2008-04-16
2014-09-20

Abstract

The authors reported on investigation of the thermal conductivity of graphene suspended across trenches in wafer. The measurements were performed using a noncontact technique based on micro-Raman spectroscopy. The amount of power dissipated in graphene and corresponding temperature rise were determined from the spectral position and integrated intensity of graphene’s mode. The extremely high thermal conductivity in the range of and phonon mean free path of near room temperature were extracted for a set of graphene flakes. The obtained results suggest graphene’s applications as thermal management material in future nanoelectronic circuits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/15/1.2907977.html;jsessionid=96ul1art2k872.x-aip-live-02?itemId=/content/aip/journal/apl/92/15/10.1063/1.2907977&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/15/10.1063/1.2907977
10.1063/1.2907977
SEARCH_EXPAND_ITEM