1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhancement of organic magnetoresistance by electrical conditioning
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/19/10.1063/1.2924765
1.
1.T. L. Francis, Ö. Mermer, G. Veeraraghavan, and M. Wohlgenannt, New J. Phys. 6, 185 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/185
2.
2.Ö. Mermer, G. Veeraraghavan, T. L. Francis, and M. Wohlgenannt, Solid State Commun. 134, 631 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.02.044
3.
3.Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, and U. Scherf, Phys. Rev. B 74, 045213 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045213
4.
4.Y. Wu, Z. Xu, B. Hu, and J. Howe, Phys. Rev. B 75, 035214 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035214
5.
5.P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 102, 073710 (2007).
http://dx.doi.org/10.1063/1.2787158
6.
6.B. Hu and Y. Wu, Nat. Mater. 6, 985 (2007).
http://dx.doi.org/10.1038/nmat2034
7.
7.Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, T. D. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205202
8.
8.F. L. Bloom, W. Wagemans, and B. Koopmans, J. Appl. Phys. 103, 07F320 (2008).
http://dx.doi.org/10.1063/1.2839317
9.
9.P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, and M. R. J. Gibbs, Phys. Rev. B 75, 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
10.
10.V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156, 757 (2006).
http://dx.doi.org/10.1016/j.synthmet.2006.04.010
11.
11.P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
12.
12.I. D. Parker, Y. Cao, and C. Y. Yang, J. Appl. Phys. 85, 2441 (1999).
http://dx.doi.org/10.1063/1.369564
13.
13.P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922 (1994).
http://dx.doi.org/10.1063/1.112532
14.
14.K. K. Lin, S. J. Chua, and S. F. Lim, J. Appl. Phys. 90, 976 (2001).
http://dx.doi.org/10.1063/1.1376669
15.
15.B. H. Cumpston and K. F. Jensen, Appl. Phys. Lett. 69, 3941 (1996).
http://dx.doi.org/10.1063/1.117577
16.
16.A. Crispin, A. Jonsson, M. Fahlman, and W. Salaneck, J. Chem. Phys. 115, 5252 (2001).
http://dx.doi.org/10.1063/1.1394734
17.
17.J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, J. Appl. Phys. 79, 2745 (1996).
http://dx.doi.org/10.1063/1.361096
18.
18.G. C. M. Silvestre, M. T. Johnson, A. Giraldo, and J. M. Shannon, Appl. Phys. Lett. 78, 1619 (2001).
http://dx.doi.org/10.1063/1.1355013
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/19/10.1063/1.2924765
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Magnetoresistance at as a function of applied voltage before and after a conditioning process at for . Voltage values with maximum OMR effect are assigned. (b) Magnetoresistance at as a function of applied magnetic field before and after the conditioning process of part (a).

Image of FIG. 2.

Click to view

FIG. 2.

Magnetoresistance at as a function of time during a conditioning procedure at different current densities . Each data point corresponds to the maximum OMR effect obtained in a voltage scan from .

Image of FIG. 3.

Click to view

FIG. 3.

Magnetoresistance as a function of luminance during a conditioning process at different current densities . Each value for corresponds to the maximum OMR effect at obtained in a voltage scan from . Luminance at was directly recorded before starting a voltage scan and was normalized to its maximum value at the beginning of the corresponding conditioning procedure.

Loading

Article metrics loading...

/content/aip/journal/apl/92/19/10.1063/1.2924765
2008-05-15
2014-04-20

Abstract

We demonstrate that electrical conditioning can be used as an efficient method to enhance the organic magnetoresistanceeffect in organic light emitting diodes. Depending on duration and intensity of the conditioning process the absolute value of the magnetoresistanceeffect can be increased from to values exceeding 15% at in devices based on poly(paraphenylene vinylene). Qualitatively, the increase in magnetoresistance can be correlated with a decrease in luminance during the conditioning process. From this we conclude that device degradation mechanisms are responsible for the enhancement of organic magnetoresistance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/19/1.2924765.html;jsessionid=67a1adlphtsqd.x-aip-live-03?itemId=/content/aip/journal/apl/92/19/10.1063/1.2924765&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of organic magnetoresistance by electrical conditioning
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/19/10.1063/1.2924765
10.1063/1.2924765
SEARCH_EXPAND_ITEM