1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
X-ray stability and response of polymeric photodiodes for imaging applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/2/10.1063/1.2834364
1.
1.M. J. Yaffe and J. A. Rowlands, Phys. Med. Biol. 42, 1 (1997).
http://dx.doi.org/10.1088/0031-9155/42/1/001
2.
2.J. P. Ponpon, Nucl. Instrum. Methods Phys. Res. A 551, 15 (2005).
http://dx.doi.org/10.1016/j.nima.2005.07.038
3.
3.M. Hoheisel and L. Baetz, Thin Solid Films 383, 132 (2001).
http://dx.doi.org/10.1016/S0040-6090(00)01592-3
4.
4.J.-P. Moy, Thin Solid Films 337, 213 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01179-1
5.
5.T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, IEEE Trans. Electron Devices 52, 2502 (2005).
http://dx.doi.org/10.1109/TED.2005.857935
6.
6.R. A. Street, J. Graham, Z. D. Popovic, A. Hor, S. Ready, and J. Ho, J. Non-Cryst. Solids 299-302, 1240 (2002).
7.
7.A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, Appl. Phys. Lett. 85, 3304 (2004).
http://dx.doi.org/10.1063/1.1801673
8.
8.P. Schilinsky, C. Waldauf, J. Hauch, and C. J. Brabec, Thin Solid Films 451–452, 105 (2004).
9.
9.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
10.
10.G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys. Lett. 64, 3422 (1994).
http://dx.doi.org/10.1063/1.111260
11.
11.J. Huang, H. Wang, Y. Kim, A. J. deMello, D. D. C. Bradley, and J. C. deMello, Phys. Chem. Chem. Phys. 8, 3904 (2006).
http://dx.doi.org/10.1039/b607016g
12.
12.Y. Li, L. E. Antonuk, Y. El–Mohri, Q. Zhao, H. Du, A. Sawant, and Y. Wang, J. Appl. Phys. 99, 064501 (2006).
http://dx.doi.org/10.1063/1.2179149
13.
13.R. A. Street, M. Mulato, R. Lau, and J. Ho, Appl. Phys. Lett. 78, 4193 (2001).
http://dx.doi.org/10.1063/1.1380733
14.
14.L.-L. Chua, M. Dipankar, S. Sivaramakrishnan, X. Gao, D. Qi, A. T. S. Wee, and P. K. H. Ho, Langmuir 22, 8587 (2006).
15.
15.H. Ahn, D. W. Oblas, and J. E. Whitten, Macromolecules 37, 3381 (2004).
http://dx.doi.org/10.1021/ma030589x
16.
16.M. Atreya, S. Li, E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, and W. Huan, Polym. Degrad. Stab. 65, 287 (1999).
http://dx.doi.org/10.1016/S0141-3910(99)00018-X
17.
17.M. Wolszczak, J. Kroh, and M. M. Abdel–Hamid, Radiat. Phys. Chem. 45, 41 (1995).
18.
18.E. A. B. Silva, J. F. Borin, P. Nicolucci, C. F. O. Graeff, T. G. Netto, and R. F. Bianchi, Appl. Phys. Lett. 86, 131902 (2005).
http://dx.doi.org/10.1063/1.1891300
19.
19.S. C. Graham, R. H. Friend, S. Fung, and S. C. Moratti, Synth. Met. 84, 903 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04204-X
20.
20.C. R. Newman, D. C. Frisbie, D. A. da Silva Filho, J.-L. Bredas, P. C. Ewbank, and K. R. Mann, Chem. Mater. 16, 4436 (2004).
http://dx.doi.org/10.1021/cm049391x
21.
21.M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, and E. P. Woo, Adv. Mater. (Weinheim, Ger.) 11, 241 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199903)11:3<241::AID-ADMA241>3.0.CO;2-J
22.
22.L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434, 195 (2005).
23.
23.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
24.
24.C. R. Newman, J. Blakesley, R. Speller, and H. Sirringhaus, Appl. Phys. Lett. 91, 142105 (2007).
http://dx.doi.org/10.1063/1.2785946
25.
25.R. A. B. Devine, M. Ling, A. B. Mallik, M. Roberts, and Z. Bao, Appl. Phys. Lett. 88, 151907 (2006).
http://dx.doi.org/10.1063/1.2194894
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/2/10.1063/1.2834364
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The chemical structures of the molecules used for this study. (b) Absorption spectra for thin blend films on quartz. Open squares: P3HT:PCBM. Open circles: F8BT:PDI. Open triangles: TFB:PDI. The photoluminescence spectrum of the common ceramic scintillator upon UV excitation at is also depicted (solid circles).

Image of FIG. 2.

Click to view

FIG. 2.

EQE values for the devices based on blends of (a) P3HT:PCBM, (b) F8BT:PDI, and (c) TFB:PDI. Insets: dark curves for devices based on blends of (a) P3HT:PCBM, (b) F8BT:PDI, and (c) TFB:PDI. Solid squares: reference samples as prepared. Open squares: reference samples after four weeks. Solid circles: active samples as prepared, before exposure to . Open circles: active samples after exposure to and measured after four weeks.

Image of FIG. 3.

Click to view

FIG. 3.

Photocurrent of photodiodes based on the studied blends after the attachment of a scintillation screen onto the devices at different x-ray dose rates. (a) P3HT:PCBM, (b) F8BT:PDI, and (c) TFB:PDI. The symbols indicate the different bias conditions applied in each system. The dotted lines are linear fits to the experimental data.

Tables

Generic image for table

Click to view

Table I.

Mean percentage change in measured EQE values. EQE values were averaged over at least three different sample devices. The observed differences for the reference samples correspond to a time span of four weeks. The observed differences for the active samples correspond to four weeks period and exposure to of x-ray radiation. In the third column, the effect due to x-ray exposure only has been calculated by subtraction.

Loading

Article metrics loading...

/content/aip/journal/apl/92/2/10.1063/1.2834364
2008-01-16
2014-04-17

Abstract

The x-ray stability of photodiodes made of poly(9,9-di--octylfluorene-co-benzothiadiazole):perylene diimide, poly[2,7-(9,9-di--octylfluorene)-co-(1,4-phenylene-[(4-sec-butylphenyl)imino]-1,4-phenylene)]:perylene diimide and poly(3-hexylthiophene):([6,6]-phenylC61-butyric acid methyl ester) (P3HT:PCBM) blends has been examined up to lifetime doses equivalent to those used in medicalx-ray digital imaging applications. Dark currents and external quantum efficiencies (EQEs) are not significantly affected after exposure to . Only in the case of P3HT:PCBM is a significant loss in EQE (17% of the initial value) observed. Possible reasons for the observed changes are proposed. When a scintillation layer is attached to the devices, a linear dependence of the photocurrent on the x-ray dose rate is observed for the three material systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/2/1.2834364.html;jsessionid=h8ksk209rhgdg.x-aip-live-02?itemId=/content/aip/journal/apl/92/2/10.1063/1.2834364&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: X-ray stability and response of polymeric photodiodes for imaging applications
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/2/10.1063/1.2834364
10.1063/1.2834364
SEARCH_EXPAND_ITEM