1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Contact resistance of dibenzotetrathiafulvalene-based organic transistors with metal and organic electrodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/2/10.1063/1.2834374
1.
1.Z. Bao, Adv. Mater. (Weinheim, Ger.) 12, 227 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:3<227::AID-ADMA227>3.0.CO;2-U
2.
2.H. E. Katz and S. L. Gilat, Acc. Chem. Res. 34, 359 (2001).
http://dx.doi.org/10.1021/ar990114j
3.
3.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim, Ger.) 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
4.
4.C. R. Kagan and P. Andy, Thin-Film Transistors (Marcel Dekker, New York, 2003).
5.
5.A. R. Murphy and J. M. L. Fréchet, Chem. Rev. (Washington, D.C.) 107, 1066 (2007).
http://dx.doi.org/10.1021/cr0501386
6.
6.F. Chen, L. Kung, T. Chen, and Y. Lin, Appl. Phys. Lett. 90, 073504 (2007), and references therein.
http://dx.doi.org/10.1063/1.2535741
7.
7.Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, K. Nishimura, and G. Saito, Appl. Phys. Lett.86, 063504 (2005).
http://dx.doi.org/10.1063/1.1863434
8.
8.Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, and G. Saito, Appl. Phys. Lett. 88, 073504 (2006).
http://dx.doi.org/10.1063/1.2173226
9.
9.K. Shibata, H. Wada, K. Ishikawa, H. Takezoe, and T. Mori, Appl. Phys. Lett. 90, 193509 (2007).
http://dx.doi.org/10.1063/1.2738379
10.
10.P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, Solid-State Electron. 47, 259 (2002).
http://dx.doi.org/10.1016/S0038-1101(02)00204-6
11.
11.H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron. 47, 297 (2002).
http://dx.doi.org/10.1016/S0038-1101(02)00210-1
12.
12.S. Hünig, G. Kieblich, H. Quast, and D. Scheutzow, Liebigs Ann. Chem. 1973, 310.
13.
13.H. Meng, L. Zheng, A. J. Lovinger, B.-C. Wand, P. G. V. Patten, and Z. Bao, Chem. Mater. 15, 1778 (2003).
http://dx.doi.org/10.1021/cm020866z
14.
14.M. Mas–Torrent and C. Rovira, J. Mater. Chem. 16, 433 (2006).
http://dx.doi.org/10.1039/b510121b
15.
15.M. Mas–Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, and C. Rovira, Appl. Phys. Lett. 86, 012110 (2006).
http://dx.doi.org/10.1063/1.1848179
16.
16.Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, and Y. Yamashita, J. Am. Chem. Soc. 127, 10142 (2005).
http://dx.doi.org/10.1021/ja051755e
17.
17.T. Yasuda, T. Goto, K. Fujita, and T. Tsutui, Mol. Cryst. Liq. Cryst. 444, 219 (2006).
http://dx.doi.org/10.1080/15421400500364998
18.
18.J. Nakayama, Synthesis 1975, 38.
19.
19.T. Kaji, Dr. Thesis, the University of Tokyo (2007);
19.T. Kaji, S. Entani, S. Ikeda, and K. Saiki (private communication).
20.
20.H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. (Weinheim, Ger.) 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
21.
21.I. G. Hill and A. Kahn, Proc. SPIE 3476, 168 (1998).
http://dx.doi.org/10.1117/12.332610
22.
22.N. J. Watkins, Q. T. L. S. Zorba, L. Yan, Y. Gao, S. F. Nelson, C. S. Kuo, and T. N. Jackson, Proc. SPIE 4466, 1 (2001).
http://dx.doi.org/10.1117/12.451472
23.
23.R. J. Murdey and W. R. Salaneck, Proc. SPIE 5519, 125 (2004).
http://dx.doi.org/10.1117/12.560415
24.
24.T. J. Emge, F. M. Wiygul, J. S. Chappell, A. N. Bloch, J. P. Ferraris, D. O. Cowan, and T. J. Kistenmacher, Mol. Cryst. Liq. Cryst. 87, 137 (1982).
http://dx.doi.org/10.1080/00268948208083778
25.
25.T. J. Kistenmacher, T. E. Phillips, and D. O. Cowan, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 30, 763 (1974).
http://dx.doi.org/10.1107/S0567740874003669
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/2/10.1063/1.2834374
Loading
/content/aip/journal/apl/92/2/10.1063/1.2834374
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/92/2/10.1063/1.2834374
2008-01-16
2014-11-26

Abstract

Thin-film transistors of dibenzotetrathiafulvalene (DBTTF) are investigated by changing the source and drain (S/D) electrodematerials. Not only the mobility but also the contact resistance, estimated from the transfer line method, changes depending on the metalwork functions. Nonetheless, S/D electrodes made of a metallic organic charge-transfer salt, (tetrathiafulvalene) (tetracyanoquinodimethane) [(TTF)(TCNQ)] exhibits much smaller contact resistance, which is attributed to small potential shift on the organic/organic interface compared with the organic/metal interface. A thin film of (DBTTF)(TCNQ) works as an active layer of air-stable -channel organic transistors when (TTF)(TCNQ) is used as the S/D electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/2/1.2834374.html;jsessionid=1bmoykxw9jlq3.x-aip-live-03?itemId=/content/aip/journal/apl/92/2/10.1063/1.2834374&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Contact resistance of dibenzotetrathiafulvalene-based organic transistors with metal and organic electrodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/2/10.1063/1.2834374
10.1063/1.2834374
SEARCH_EXPAND_ITEM