1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Submicron-scale manipulation of phase separation in organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/2/10.1063/1.2835047
1.
1.K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
2.
2.S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. (Washington, D.C.) 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
3.
3.W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
4.
4.G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
5.
5.A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, Appl. Phys. Lett. 80, 1695 (2002).
http://dx.doi.org/10.1063/1.1456550
6.
6.S. M. Lindner, S. Huttner, A. Chiche, M. Thelakkat, and G. Krausch, Angew. Chem., Int. Ed. 45, 3364 (2006).
http://dx.doi.org/10.1002/anie.200503958
7.
7.M. S. Kim, J. S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kim, Appl. Phys. Lett. 90, 123113 (2007).
http://dx.doi.org/10.1063/1.2715036
8.
8.V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
http://dx.doi.org/10.1002/adfm.200600489
9.
9.A. Karim, J. F. Douglas, B. P. Lee, S. C. Glotzer, J. A. Rogers, R. J. Jackman, E. J. Amis, and G. M. Whitesides, Phys. Rev. E 57, R6273 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.R6273
10.
10.J. K. Cox, A. Eisenberg, and R. B. Lennox, Curr. Opin. Colloid Interface Sci. 4, 52 (1999).
http://dx.doi.org/10.1016/S1359-0294(99)00004-7
11.
11.P. Cyganik, A. Bernasik, A. Budkowski, B. Bergues, K. Kowalski, J. Rysz, J. Lekki, and M. Lekka, Vacuum 63, 307 (2001).
http://dx.doi.org/10.1016/S0042-207X(01)00206-8
12.
12.W. D. Johnston, Jr., Solar Voltaic Cells (Dekker, New York, 1980).
13.
13.D. W. Sievers, V. Shrotriya, and Y. Yang, J. Appl. Phys. 100, 114509 (2006).
http://dx.doi.org/10.1063/1.2388854
14.
14.V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 063505 (2006).
http://dx.doi.org/10.1063/1.2335377
15.
15.A. Swinnen, I. Haeldermans, M. Vande Ven, J. D’Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, and J. Manca, Adv. Funct. Mater. 16, 760 (2006).
http://dx.doi.org/10.1002/adfm.200500812
16.
16.M. Sundberg, O. Inganas, S. Stafstrom, G. Gustafsson, and B. Sjogren, Solid State Commun. 71, 435 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90087-2
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/2/10.1063/1.2835047
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Fabrication processes of polymer solar cells in this study.

Image of FIG. 2.

Click to view

FIG. 2.

Tapping mode AFM images of the SAM-patterned PEDOT:PSS films [(a), (c), and (d)] and the P3HT:PCBM films on the SAM-patterned PEDOT:PSS [(b), (d), and (f)]. The grating sizes were in (a) and (b), in (c) and (d), and in (e) and (f).

Image of FIG. 3.

Click to view

FIG. 3.

Current density vs voltage characteristics of the devices with various SAM-patterned grating sizes measured under illumination (simulated AM1.5G, ).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Dark curves of the hole-only devices with various grating sizes. (b) The UV-vis spectrum of the P3HT:PCBM films on PEDOT:PSS patterned with different grating sizes.

Loading

Article metrics loading...

/content/aip/journal/apl/92/2/10.1063/1.2835047
2008-01-17
2014-04-20

Abstract

This paper describes a method for controlling the submicron-scale phase separation of poly(3-hexylthiophene) and (6,6)-phenyl--butyric acid methyl ester in organic solar cells. Using microcontact printing of self-assembled monolayers on the device buffer layer to divide the surface into two regimes having different surface energies, an interdigitated structure aligned vertical to the substrate surface is achieved after spontaneous surface-directed phase separation. The power conversion efficiency increases upon decreasing the grating spacing, reaching 2.47%. The hole mobility increased as a consequence of improved polymer chain ordering, resulting in higher device efficiency, while smaller pattern sizes were used.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/2/1.2835047.html;jsessionid=46q4r380f7ppi.x-aip-live-02?itemId=/content/aip/journal/apl/92/2/10.1063/1.2835047&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Submicron-scale manipulation of phase separation in organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/2/10.1063/1.2835047
10.1063/1.2835047
SEARCH_EXPAND_ITEM