1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Transparent and conducting electrodes for organic electronics from reduced graphene oxide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/23/10.1063/1.2937846
1.
1.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
3.
3.P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
http://dx.doi.org/10.1063/1.2768624
4.
4.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
5.
5.K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).
http://dx.doi.org/10.1126/science.1137201
6.
6.S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nat. Mater. 6, 198 (2007).
http://dx.doi.org/10.1038/nmat1846
7.
7.N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
8.
8.R. R. Nair, P. Blake, A. N. Grigorenko, K. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science (to be published), doi:10.1126/science.1156965.
9.
9.S. Gijie, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, Nano Lett. 7, 3394 (2007).
10.
10.C. Gomez-Navarro, T. R. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).
11.
11.S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem. 16, 155 (2006).
12.
12.G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
13.
13.G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
14.
14.M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
http://dx.doi.org/10.1063/1.2006986
15.
15.R. W. Miles, G. Zoppi, and I. Forbes, Mater. Today 10, 20 (2007).
http://dx.doi.org/10.1016/S1369-7021(06)71788-6
16.
16.A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, Appl. Phys. Lett. 87, 203511 (2005).
http://dx.doi.org/10.1063/1.2132065
17.
17.M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, Appl. Phys. Lett. 88, 233506 (2006).
http://dx.doi.org/10.1063/1.2209887
18.
18.X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2007).
19.
19.H. A. Becerill, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
20.
20.M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon 42, 2929 (2004).
21.
21.S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
22.
22.M. J. McAllister, J. L. Lio, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Caro, R. K. Prud’homme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).
23.
23.H. E. Unalan, G. Fanchini, A. Kanwal, A. Du Pasquier, and M. Chhowalla, Nano Lett. 6, 677 (2006).
http://dx.doi.org/10.1021/nl052406l
24.
24.Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).
http://dx.doi.org/10.1126/science.1101243
25.
25.L. Hu, D. S. Hecht, and G. Gruner, Nano Lett. 4, 2513 (2004).
http://dx.doi.org/10.1021/nl048435y
26.
26.I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, and R. S. Ruoff, Nano Lett. 7, 3569 (2007).
27.
27.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
28.
28.S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, Nano Lett. 7, 1888 (2007).
29.
29.B. B. Parekh, G. Fanchini, G. Eda, and M. Chhowalla, Appl. Phys. Lett. 90, 121913 (2007).
http://dx.doi.org/10.1063/1.2715027
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/23/10.1063/1.2937846
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM micrographs of reduced GO thin films prepared by filtrating GO suspension in volumes of (a) , (b) , (c) , and (d) . Contrast is observed between the substrate (light) and reduced GO (dark). The scale bar corresponds to . (e) Reduced GO film thicknesses as a function of effective filtration volume. Films were prepared on substrates and the step height at the edges of a scratch was measured with AFM at more than ten different locations for each sample.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Sheet resistance of reduced GO thin films as a function of effective filtration volume. Measurements were made at more than five different areas of the films. (b) Transmittance at as a function of sheet resistance for reduced GO thin films.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Transfer characteristics of a reduced GO thin film before and after dipping in for . The film was prepared at a filtration volume of with GO suspension and transferred onto a Si substrate with thermally grown oxide. Au was used as source and drain electrodes and the channel length was . The gate voltage was swept from positive to negative with step.

Image of FIG. 4.

Click to view

FIG. 4.

Solar cell characteristics of an OPV with a reduced GO thin film as the transparent electrode. A Newport AM1.5 solar simulator was used to evaluate the photovoltaic characteristics. The film used for the fabrication of OPV had thickness of , sheet resistance of , and transmittance of 64%.

Loading

Article metrics loading...

/content/aip/journal/apl/92/23/10.1063/1.2937846
2008-06-13
2014-04-16

Abstract

The deposition and optoelectronic properties of reduced graphene oxide thin films are described. Thin films with thicknesses ranging from have been deposited by the vacuum filtration method. The conductivity of the thin films can be varied over six orders of magnitude by varying the filtration volume of the graphene oxide aqueous suspension while maintaining the transmittance between 60%–95%. In addition, enhancement in the conductance through Cl doping is demonstrated. The combination of the reduction and Cl treatments make the reduced graphene oxide thin films sufficiently conducting to incorporate them as the hole collecting electrode in proof of concept organic photovoltaic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/23/1.2937846.html;jsessionid=3ece6m3a2msmp.x-aip-live-02?itemId=/content/aip/journal/apl/92/23/10.1063/1.2937846&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transparent and conducting electrodes for organic electronics from reduced graphene oxide
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/23/10.1063/1.2937846
10.1063/1.2937846
SEARCH_EXPAND_ITEM