1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Control of film morphology and its effects on subthreshold characteristics in dibenzotetrathiafulvalene organic thin-film transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/23/10.1063/1.2940593
1.
1.M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, and C. Rovira, J. Am. Chem. Soc. 126, 984 (2004).
http://dx.doi.org/10.1021/ja0393933
2.
2.Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, and Y. Yamashita, J. Am. Chem. Soc. 127, 10142 (2005).
http://dx.doi.org/10.1021/ja051755e
3.
3.M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, and C. Rovira, Appl. Phys. Lett. 86, 012110 (2005).
http://dx.doi.org/10.1063/1.1848179
4.
4.Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, and G. Saito, Chem. Mater. 19, 6382 (2007).
http://dx.doi.org/10.1021/cm702690w
5.
5.K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T. Mori, Appl. Phys. Lett. 92, 023305 (2008).
http://dx.doi.org/10.1063/1.2834374
6.
6.For recent reviews, see articles of “Special Topics: Organic Conductors,” J. Phys. Soc. Jpn. 75, 5 (2006).
7.
7.Organic Electron edited by H. Klauk (Wiley-VCH, Weinheim, 2006).
8.
8.Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, K. Nishimura, and G. Saito, Appl. Phys. Lett. 86, 063504 (2005).
http://dx.doi.org/10.1063/1.1863434
9.
9.C. Kim, A. Facchetti, and T. J. Marks, Adv. Mater. (Weinheim, Ger.) 19, 2561 (2007).
http://dx.doi.org/10.1002/adma.200700101
10.
10.D. J. Durian and C. Franck, Phys. Rev. Lett. 59, 555 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.555
11.
11.D. Guo, S. Entani, S. Ikeda, and K. Saiki, Chem. Phys. Lett. 429, 124 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.08.009
12.
12.M. Hiraoka, T. Hasegawa, T. Yamada, Y. Takahashi, S. Horiuchi, and Y. Tokura, Adv. Mater. (Weinheim, Ger.) 19, 3248 (2007).
http://dx.doi.org/10.1002/adma.200701162
13.
13.Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada, and Y. Tokura, Appl. Phys. Lett. 87, 153506 (2005).
http://dx.doi.org/10.1063/1.2099540
14.
14.J. A. Venables, Surf. Sci. 299, 798 (1994).
http://dx.doi.org/10.1016/0039-6028(94)90698-X
15.
15.A. B. Chwang and D. Frisble, J. Appl. Phys. 90, 1342 (2001).
http://dx.doi.org/10.1063/1.1376404
16.
16.S. Verlaak and P. Heremans, Phys. Rev. B 75, 115127 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115127
17.
17.S.-C. Lee and M. J. Lee, J. Appl. Phys. 88, 1999 (2000).
http://dx.doi.org/10.1063/1.1305908
18.
18.Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, and G. Saito, Appl. Phys. Lett. 88, 073504 (2006).
http://dx.doi.org/10.1063/1.2173226
19.
19.G. Saito and J. P. Ferraris, Bull. Chem. Soc. Jpn. 53, 2141 (1980).
http://dx.doi.org/10.1246/bcsj.53.2141
20.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/23/10.1063/1.2940593
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

AFM images of vacuum-deposited DBTTF layer grown on top of a variously surface-treated silicon dioxide dielectric substrate with HMDS. The insets show images of hemispherical water drops contacted on the respective substrates.

Image of FIG. 2.

Click to view

FIG. 2.

Output characteristics of a DBTTF OTFT composed of film C shown in Fig. 1 and top-contact gold source/drain electrodes.

Image of FIG. 3.

Click to view

FIG. 3.

Transfer characteristics of DBTTF OTFTs composed of films A, B, and C; all the OTFTs have top-contact gold source/drain electrodes. The device with film C exhibits sharper switching in the subthreshold region and a shift of to the negative side, as opposed to the devices with films A and B.

Image of FIG. 4.

Click to view

FIG. 4.

Transfer characteristics of DBTTF OTFTs composed of films A and C, with three kinds of acceptor layers inserted between the channel and the electrode layers. The effect of the acceptor layers is quite noticeable in the device performance of film C, while the effect is limited only to the magnitude of the off current in the device with film A.

Loading

Article metrics loading...

/content/aip/journal/apl/92/23/10.1063/1.2940593
2008-06-13
2014-04-23

Abstract

The interface engineering of dibenzotetrathiafulvalene organic thin-film transistors (OTFTs) is reported. Polycrystalline-film morphologies are successfully controlled by surface treatments of silicon dioxide dielectric substrates using hexamethyldisilazane, a silane coupling agent, to tune the average lateral grain sizes between 0.2 and . The field-effect mobility of the resulting OTFTs is approximately . The effects of the grain sizes on subthreshold properties are discussed in terms of the charge transport against the grain boundaries through the films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/23/1.2940593.html;jsessionid=1xgipqrcfqcsi.x-aip-live-03?itemId=/content/aip/journal/apl/92/23/10.1063/1.2940593&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Control of film morphology and its effects on subthreshold characteristics in dibenzotetrathiafulvalene organic thin-film transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/23/10.1063/1.2940593
10.1063/1.2940593
SEARCH_EXPAND_ITEM