1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/92/23/10.1063/1.2940594
1.
1.H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kaobayyashi, and H. Uchiki, Appl. Phys. Lett. 76, 1905 (2000).
http://dx.doi.org/10.1063/1.126207
2.
2.W. I. Park, Y. H. Jun, S. W. Jung, and G.-C. Yi, Appl. Phys. Lett. 82, 964 (2003).
http://dx.doi.org/10.1063/1.1544437
3.
3.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
http://dx.doi.org/10.1126/science.1060367
4.
4.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
http://dx.doi.org/10.1038/nmat1284
5.
5.W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H.-J. Lee, Appl. Phys. Lett. 85, 5052 (2003).
http://dx.doi.org/10.1063/1.1821648
6.
6.M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
http://dx.doi.org/10.1038/nmat1387
7.
7.D. Basaka, G. Aminb, B. Mallikb, G. K. Paulc, and S. K. Senc, J. Cryst. Growth 256, 73 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01304-6
8.
8.S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00830-2
9.
9.S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, Phys. Rev. Lett. 92, 155504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.155504
10.
10.J. J. Wu, H. I. Wen, C. H. Tseng, and S. C. Liu, Adv. Funct. Mater. 14, 806 (2004).
http://dx.doi.org/10.1002/adfm.200305092
11.
11.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
http://dx.doi.org/10.1126/science.1058120
12.
12.C. H. Ku and J.-J. Wu, J. Phys. Chem. B 110, 12981 (2006).
http://dx.doi.org/10.1021/jp061458b
13.
13.J. Cui and U. J. Gibson, J. Phys. Chem. B 109, 22074 (2005).
http://dx.doi.org/10.1021/jp054160e
14.
14.A. Suzuki and N. Miyaura, Chem. Rev. (Washington, D.C.) 95, 2457 (1995).
http://dx.doi.org/10.1021/cr00039a007
15.
15.R. Pacios, J. Nelson, D. C. Bradley, and C. J. Brabec, Appl. Phys. Lett. 83, 4764 (2003).
http://dx.doi.org/10.1063/1.1628826
16.
16.M. Graetzel, Nature (London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
17.
17.G. Greczynskia, Th. Kugler, and W. R. Salaneck, J. Appl. Phys. 88, 7187 (2000).
http://dx.doi.org/10.1063/1.1328059
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/23/10.1063/1.2940594
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The cross-sectional SEM micrograph of the ZnO nanorods. The scale bar is . The inset shows the top view of ZnO nanorods. (b) The chemical structure of the PFO polymer. (c) Schematic diagram of the PFO/ZnO nanorod hybrid photodiode.

Image of FIG. 2.

Click to view

FIG. 2.

Absorption and PL spectra of ZnO nanorods (dash line) and polymer PFO (solid line) respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Current-voltage characteristics of PFO/ZnO nanorod heterojunctions in the dark and under illumination respectively. The incident power is . The inset shows the semi-log plot for the above curves. (b) The RQEs for hybrid device. The quantum efficiency under illumination is taken as 1.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Spectral response of the hybrid photodiode at different biases. The dash line shows the absorption spectra of PFO. (b) The PL decay curves for the pristine PFO and PFO/ZnO nanorod hybrid thin films, respectively. The exciting wavelength of the pulse is and the PL emission wavelength is probed at of PFO The inset shows the corresponding energy levels for the materials used in the device.

Loading

Article metrics loading...

/content/aip/journal/apl/92/23/10.1063/1.2940594
2008-06-10
2014-04-21

Abstract

In this article, we have proposed a nanostructured near-ultraviolet photodetector based on the ZnO nanorod/polyfluorene hybrid by solution processes at low temperature. The current-voltage characteristic of the hybrid device demonstrates the typical -heterojunction diode behavior, consisting of -type polymer and -type ZnOnanorods, respectively. The relative quantum efficiencies of the hybrid device exhibit a nearly three order difference while illuminated under UV and visible light, respectively. The responsivity for the device can reach to at by applying a bias of , which provides a route to fabricate a low-cost near-UV photodetector.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/92/23/1.2940594.html;jsessionid=2ujkwraf781q2.x-aip-live-03?itemId=/content/aip/journal/apl/92/23/10.1063/1.2940594&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes
http://aip.metastore.ingenta.com/content/aip/journal/apl/92/23/10.1063/1.2940594
10.1063/1.2940594
SEARCH_EXPAND_ITEM